Modelling Dynamic Processes Using System Identification Methods

Author(s):  
Yuri A. W. Shardt
2004 ◽  
Author(s):  
David Klyde ◽  
Chuck Harris ◽  
Peter M. Thompson ◽  
Edward N. Bachelder

1988 ◽  
Vol 16 (1) ◽  
pp. 85-107 ◽  
Author(s):  
Sandor Vajda ◽  
Keith R. Godfrey ◽  
Peter Valko

Author(s):  
Mark van de Ruit ◽  
Winfred Mugge ◽  
Gaia Cavallo ◽  
John Lataire ◽  
Daniel Ludvig ◽  
...  

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Lan Wang ◽  
Yu Cheng ◽  
Jinglu Hu ◽  
Jinling Liang ◽  
Abdullah M. Dobaie

Quasi-linear autoregressive with exogenous inputs (Quasi-ARX) models have received considerable attention for their usefulness in nonlinear system identification and control. In this paper, identification methods of quasi-ARX type models are reviewed and categorized in three main groups, and a two-step learning approach is proposed as an extension of the parameter-classified methods to identify the quasi-ARX radial basis function network (RBFN) model. Firstly, a clustering method is utilized to provide statistical properties of the dataset for determining the parameters nonlinear to the model, which are interpreted meaningfully in the sense of interpolation parameters of a local linear model. Secondly, support vector regression is used to estimate the parameters linear to the model; meanwhile, an explicit kernel mapping is given in terms of the nonlinear parameter identification procedure, in which the model is transformed from the nonlinear-in-nature to the linear-in-parameter. Numerical and real cases are carried out finally to demonstrate the effectiveness and generalization ability of the proposed method.


2015 ◽  
Vol 719-720 ◽  
pp. 475-481
Author(s):  
Hua Shu ◽  
Huai Lin Shu

System identification is the basis for control system design. For linear time-invariant systems have a variety of identification methods, identification methods for nonlinear dynamic system is still in the exploratory stage. Nonlinear identification method based on neural network is a simple and effective general method that does not require too much priori experience about the system to be identified. Through training and learning, the network weights are corrected to achieve the purpose of system identification. The paper is about the identification of multivariable nonlinear dynamic system based on PID neural network. The structure and algorithm of PID neural network are introduced and the properties and characteristics are analyzed. The system identification is completed and the results are fast convergence.


Sign in / Sign up

Export Citation Format

Share Document