scholarly journals Nonlinear System Identification Using Quasi-ARX RBFN Models with a Parameter-Classified Scheme

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Lan Wang ◽  
Yu Cheng ◽  
Jinglu Hu ◽  
Jinling Liang ◽  
Abdullah M. Dobaie

Quasi-linear autoregressive with exogenous inputs (Quasi-ARX) models have received considerable attention for their usefulness in nonlinear system identification and control. In this paper, identification methods of quasi-ARX type models are reviewed and categorized in three main groups, and a two-step learning approach is proposed as an extension of the parameter-classified methods to identify the quasi-ARX radial basis function network (RBFN) model. Firstly, a clustering method is utilized to provide statistical properties of the dataset for determining the parameters nonlinear to the model, which are interpreted meaningfully in the sense of interpolation parameters of a local linear model. Secondly, support vector regression is used to estimate the parameters linear to the model; meanwhile, an explicit kernel mapping is given in terms of the nonlinear parameter identification procedure, in which the model is transformed from the nonlinear-in-nature to the linear-in-parameter. Numerical and real cases are carried out finally to demonstrate the effectiveness and generalization ability of the proposed method.

2021 ◽  
Vol 28 (2) ◽  
pp. 111-123

Nonlinear system identification (NSI) is of great significance to modern scientific engineering and control engineering. Despite their identification ability, the existing analysis methods for nonlinear systems have several limitations. The neural network (NN) can overcome some of these limitations in NSI, but fail to achieve desirable accuracy or training speed. This paper puts forward an NSI method based on adaptive NN, with the aim to further improve the convergence speed and accuracy of NN-based NSI. Specifically, a generic model-based nonlinear system identifier was constructed, which integrates the error feedback and correction of predictive control with the generic model theory. Next, the radial basis function (RBF) NN was optimized by adaptive particle swarm optimization (PSO), and used to build an NSI model. The effectiveness and speed of our model were verified through experiments. The research results provide a reference for applying the adaptive PSO-optimized RBFNN in other fields.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Mengshi Jin ◽  
Wei Chen ◽  
Matthew R. W. Brake ◽  
Hanwen Song

Abstract Jointed interfaces, damage, wear, or non-idealized boundary conditions often introduce nonlinear characteristics to assembled structures. Consequently, extensive research has been carried out regarding nonlinear system identification. The development of nonlinear system identification is also enabling the intentional application of nonlinearities towards practical fields such as vibration control and energy harvesting. This research proposes a nonlinear identification procedure that consists of two steps: first, the raw data is filtered by the Double Reverse Multimodal Decomposition method that involves system reconstruction, expansion, and filtering twice. Second, the Peak Finding and Fitting method is applied to the filtered signal to extract the instantaneous amplitude and frequency. The identification procedure is applied to the measured responses from a jointed structure to assess its efficacy. The results are compared with those obtained from other well-known methods—the Hilbert transform and zero-crossing methods. The comparison results indicate that the Peaking Finding and Fitting method extracts the amplitude of the response signal more accurately. Consequently, this yields a higher signal-to-noise ratio in the extracted damping values. As a recommended last step, uncertainty assessment is conducted to calculate the 95% confidence intervals of the nonlinear properties of the system.


Sign in / Sign up

Export Citation Format

Share Document