Chip-Firing on the Complete Split Graph: Motzkin Words and Tiered Parking Functions

2021 ◽  
pp. 446-452
Author(s):  
Mark Dukes
10.37236/9874 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Chanchal Kumar ◽  
Gargi Lather ◽  
Sonica

 Let $G$ be a graph on the vertex set $V = \{ 0, 1,\ldots,n\}$ with root $0$. Postnikov and Shapiro were the first to consider a monomial ideal $\mathcal{M}_G$, called the $G$-parking function ideal, in the polynomial ring $ R = {\mathbb{K}}[x_1,\ldots,x_n]$ over a field $\mathbb{K}$ and explained its connection to the chip-firing game on graphs. The standard monomials of the Artinian quotient $\frac{R}{\mathcal{M}_G}$ correspond bijectively to $G$-parking functions. Dochtermann introduced and studied skeleton ideals of the graph $G$, which are subideals of the $G$-parking function ideal with an additional parameter $k ~(0\le k \le n-1)$. A $k$-skeleton ideal $\mathcal{M}_G^{(k)}$ of the graph $G$ is generated by monomials corresponding to non-empty subsets of the set of non-root vertices $[n]$ of size at most $k+1$. Dochtermann obtained many interesting homological and combinatorial properties of these skeleton ideals. In this paper, we study the $k$-skeleton ideals of graphs and for certain classes of graphs provide explicit formulas and combinatorial interpretation of standard monomials and the Betti numbers.


2020 ◽  
Vol 18 (1) ◽  
pp. 1531-1539
Author(s):  
Zahid Raza ◽  
Mohammed M. M. Jaradat ◽  
Mohammed S. Bataineh ◽  
Faiz Ullah

Abstract We investigate the abelian sandpile group on modified wheels {\hat{W}}_{n} by using a variant of the dollar game as described in [N. L. Biggs, Chip-Firing and the critical group of a graph, J. Algebr. Comb. 9 (1999), 25–45]. The complete structure of the sandpile group on a class of graphs is given in this paper. In particular, it is shown that the sandpile group on {\hat{W}}_{n} is a direct product of two cyclic subgroups generated by some special configurations. More precisely, the sandpile group on {\hat{W}}_{n} is the direct product of two cyclic subgroups of order {a}_{n} and 3{a}_{n} for n even and of order {a}_{n} and 2{a}_{n} for n odd, respectively.


2001 ◽  
Vol 155 (1-2) ◽  
pp. 69-82 ◽  
Author(s):  
Matthieu Latapy ◽  
Ha Duong Phan

1997 ◽  
Vol 1 (1) ◽  
pp. 253-259 ◽  
Author(s):  
Criel Merino López
Keyword(s):  

10.37236/2684 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Sam Hopkins ◽  
David Perkinson

It is known that the Pak-Stanley labeling of the Shi hyperplane arrangement provides a bijection between the regions of the arrangement and parking functions. For any graph $G$, we define the $G$-semiorder arrangement and show that the Pak-Stanley labeling of its regions produces all $G$-parking functions.


10.37236/5940 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Melody Bruce ◽  
Michael Dougherty ◽  
Max Hlavacek ◽  
Ryo Kudo ◽  
Ian Nicolas

There is a well-known bijection between parking functions of a fixed length and maximal chains of the noncrossing partition lattice which we can use to associate to each set of parking functions a poset whose Hasse diagram is the union of the corresponding maximal chains. We introduce a decomposition of parking functions based on the largest number omitted and prove several theorems about the corresponding posets. In particular, they share properties with the noncrossing partition lattice such as local self-duality, a nice characterization of intervals, a readily computable Möbius function, and a symmetric chain decomposition. We also explore connections with order complexes, labeled Dyck paths, and rooted forests.


2007 ◽  
Vol 193 (3) ◽  
pp. 189-241 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon

Sign in / Sign up

Export Citation Format

Share Document