Chip firing and the tutte polynomial

1997 ◽  
Vol 1 (1) ◽  
pp. 253-259 ◽  
Author(s):  
Criel Merino López
Keyword(s):  
10.37236/3924 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Kévin Perrot ◽  
Trung Van Pham

The Chip-firing game is a discrete dynamical system played on a graph, in which chips move along edges according to a simple local rule. Properties of the underlying graph are of course useful to the understanding of the game, but since a conjecture of Biggs that was proved by Merino López, we also know that the study of the Chip-firing game can give insights on the graph. In particular, a strong relation between the partial Tutte polynomial $T_G(1,y)$ and the set of recurrent configurations of a Chip-firing game (with a distinguished sink vertex) has been established for undirected graphs. A direct consequence is that the generating function of the set of recurrent configurations is independent of the choice of the sink for the game, as it characterizes the underlying graph itself. In this paper we prove that this property also holds for Eulerian directed graphs (digraphs), a class on the way from undirected graphs to general digraphs. It turns out from this property that the generating function of the set of recurrent configurations of an Eulerian digraph is a natural and convincing candidate for generalizing the partial Tutte polynomial $T_G(1,y)$ to this class. Our work also gives some promising directions of looking for a generalization of the Tutte polynomial to general digraphs.


2020 ◽  
Vol 18 (1) ◽  
pp. 1531-1539
Author(s):  
Zahid Raza ◽  
Mohammed M. M. Jaradat ◽  
Mohammed S. Bataineh ◽  
Faiz Ullah

Abstract We investigate the abelian sandpile group on modified wheels {\hat{W}}_{n} by using a variant of the dollar game as described in [N. L. Biggs, Chip-Firing and the critical group of a graph, J. Algebr. Comb. 9 (1999), 25–45]. The complete structure of the sandpile group on a class of graphs is given in this paper. In particular, it is shown that the sandpile group on {\hat{W}}_{n} is a direct product of two cyclic subgroups generated by some special configurations. More precisely, the sandpile group on {\hat{W}}_{n} is the direct product of two cyclic subgroups of order {a}_{n} and 3{a}_{n} for n even and of order {a}_{n} and 2{a}_{n} for n odd, respectively.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050004
Author(s):  
Hery Randriamaro

The Tutte polynomial is originally a bivariate polynomial which enumerates the colorings of a graph and of its dual graph. Ardila extended in 2007 the definition of the Tutte polynomial on the real hyperplane arrangements. He particularly computed the Tutte polynomials of the hyperplane arrangements associated to the classical Weyl groups. Those associated to the exceptional Weyl groups were computed by De Concini and Procesi one year later. This paper has two objectives: On the one side, we extend the Tutte polynomial computing to the complex hyperplane arrangements. On the other side, we introduce a wider class of hyperplane arrangements which is that of the symmetric hyperplane arrangements. Computing the Tutte polynomial of a symmetric hyperplane arrangement permits us to deduce the Tutte polynomials of some hyperplane arrangements, particularly of those associated to the imprimitive reflection groups.


2001 ◽  
Vol 155 (1-2) ◽  
pp. 69-82 ◽  
Author(s):  
Matthieu Latapy ◽  
Ha Duong Phan

1969 ◽  
Vol 3 (3) ◽  
pp. 314-314 ◽  
Author(s):  
Henry H. Crapo
Keyword(s):  

2017 ◽  
Vol 5 (1) ◽  
pp. 28-32
Author(s):  
Abdulgani Sahin

Abstract The Tutte polynomials for signed graphs were introduced by Kauffman. In 2012, Fath-Tabar, Gholam-Rezaeı and Ashrafı presented a formula for computing Tutte polynomial of a benzenoid chain. From this point on, we have also calculated the Tutte polynomials of signed graphs of benzenoid chains in this study.


2008 ◽  
Vol 8 (1&2) ◽  
pp. 147-180
Author(s):  
P. Wocjan ◽  
J. Yard

We analyze relationships between quantum computation and a family of generalizations of the Jones polynomial. Extending recent work by Aharonov et al., we give efficient quantum circuits for implementing the unitary Jones-Wenzl representations of the braid group. We use these to provide new quantum algorithms for approximately evaluating a family of specializations of the HOMFLYPT two-variable polynomial of trace closures of braids. We also give algorithms for approximating the Jones polynomial of a general class of closures of braids at roots of unity. Next we provide a self-contained proof of a result of Freedman et al.\ that any quantum computation can be replaced by an additive approximation of the Jones polynomial, evaluated at almost any primitive root of unity. Our proof encodes two-qubit unitaries into the rectangular representation of the eight-strand braid group. We then give QCMA-complete and PSPACE-complete problems which are based on braids. We conclude with direct proofs that evaluating the Jones polynomial of the plat closure at most primitive roots of unity is a \#P-hard problem, while learning its most significant bit is PP-hard, circumventing the usual route through the Tutte polynomial and graph coloring.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Abdulgani Şahin

AbstractIn this study, we introduce the relationship between the Tutte polynomials and dichromatic polynomials of (2,n)-torus knots. For this aim, firstly we obtain the signed graph of a (2,n)-torus knot, marked with {+} signs, via the regular diagram of its. Whereupon, we compute the Tutte polynomial for this graph and find a generalization through these calculations. Finally we obtain dichromatic polynomial lying under the unmarked states of the signed graph of the (2,n)-torus knots by the generalization.


Sign in / Sign up

Export Citation Format

Share Document