split graph
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 19)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 13 (2) ◽  
pp. 450-467
Author(s):  
S. Pirzada ◽  
Bilal A. Rather ◽  
Rezwan Ul Shaban ◽  
Merajuddin

Abstract For a simple connected graph G of order n having distance signless Laplacian eigenvalues ρ 1 Q ≥ ρ 2 Q ≥ ⋯ ≥ ρ n Q \rho _1^Q \ge \rho _2^Q \ge \cdots \ge \rho _n^Q , the distance signless Laplacian energy DSLE(G) is defined as D S L E ( G ) = ∑ i = 1 n | ρ i Q - 2 W ( G ) n | DSLE\left( G \right) = \sum\nolimits_{i = 1}^n {\left| {\rho _i^Q - {{2W\left( G \right)} \over n}} \right|} where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected graphs with given independence number. Further, we prove that the graph Kk ∨ ( Kt∪ Kn−k−t), 1 ≤ t ≤ ⌊ n - k 2 ⌋ 1 \le t \le \left\lfloor {{{n - k} \over 2}} \right\rfloor has the minimum distance signless Laplacian energy among all connected graphs with vertex connectivity k.


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Guillaume Ducoffe ◽  
Michel Habib ◽  
Laurent Viennot

When can we compute the diameter of a graph in quasi linear time? We address this question for the class of {\em split graphs}, that we observe to be the hardest instances for deciding whether the diameter is at most two. We stress that although the diameter of a non-complete split graph can only be either $2$ or $3$, under the Strong Exponential-Time Hypothesis (SETH) we cannot compute the diameter of an $n$-vertex $m$-edge split graph in less than quadratic time -- in the size $n+m$ of the input. Therefore it is worth to study the complexity of diameter computation on {\em subclasses} of split graphs, in order to better understand the complexity border. Specifically, we consider the split graphs with bounded {\em clique-interval number} and their complements, with the former being a natural variation of the concept of interval number for split graphs that we introduce in this paper. We first discuss the relations between the clique-interval number and other graph invariants such as the classic interval number of graphs, the treewidth, the {\em VC-dimension} and the {\em stabbing number} of a related hypergraph. Then, in part based on these above relations, we almost completely settle the complexity of diameter computation on these subclasses of split graphs: - For the $k$-clique-interval split graphs, we can compute their diameter in truly subquadratic time if $k={\cal O}(1)$, and even in quasi linear time if $k=o(\log{n})$ and in addition a corresponding ordering of the vertices in the clique is given. However, under SETH this cannot be done in truly subquadratic time for any $k = \omega(\log{n})$. - For the {\em complements} of $k$-clique-interval split graphs, we can compute their diameter in truly subquadratic time if $k={\cal O}(1)$, and even in time ${\cal O}(km)$ if a corresponding ordering of the vertices in the stable set is given. Again this latter result is optimal under SETH up to polylogarithmic factors. Our findings raise the question whether a $k$-clique interval ordering can always be computed in quasi linear time. We prove that it is the case for $k=1$ and for some subclasses such as bounded-treewidth split graphs, threshold graphs and comparability split graphs. Finally, we prove that some important subclasses of split graphs -- including the ones mentioned above -- have a bounded clique-interval number.


Author(s):  
T. E. Soorya ◽  
Sunil Mathew

Super strongly perfect graphs and their association with certain other classes of graphs are discussed in this paper. It is observed that every split graph is super strongly perfect. An existing result on super strongly perfect graphs is disproved providing a counter example. It is also established that if a graph [Formula: see text] contains a cycle of odd length, then its line graph [Formula: see text] is not always super strongly perfect. Complements of cycles of length six or above are proved to be non-super strongly perfect. If a graph is strongly perfect, then it is shown that they are super strongly perfect and hence all [Formula: see text]-free graphs are super strongly perfect.


10.37236/9961 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Pallabi Manna ◽  
Peter J. Cameron ◽  
Ranjit Mehatari

The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two vertices $u$ and $v$ are connected by an edge between if and only if either $u=v^i$ or $v=u^j$ for some $i$, $j$. A number of important graph classes, including perfect graphs, cographs, chordal graphs, split graphs, and threshold graphs, can be defined either structurally or in terms of forbidden induced subgraphs. We examine each of these five classes and attempt to determine for which groups $G$ the power graph $P(G)$ lies in the class under consideration. We give complete results in the case of nilpotent groups, and partial results in greater generality. In particular, the power graph is always perfect; and we determine completely the groups whose power graph is a threshold or split graph (the answer is the same for both classes). We give a number of open problems.


2021 ◽  
Vol 178 (3) ◽  
pp. 267-281
Author(s):  
P. K. Neethu ◽  
S.V. Ullas Chandran ◽  
Manoj Changat ◽  
Sandi Klavžar

The general position number gp(G) of a graph G is the cardinality of a largest set of vertices S such that no element of S lies on a geodesic between two other elements of S. The complementary prism G G ¯ of G is the graph formed from the disjoint union of G and its complement G ¯ by adding the edges of a perfect matching between them. It is proved that gp(G G ¯ ) ≤ n(G) + 1 if G is connected and gp(G G ¯ ) ≤ n(G) if G is disconnected. Graphs G for which gp(G G ¯ ) = n(G) + 1 holds, provided that both G and G ¯ are connected, are characterized. A sharp lower bound on gp(G G ¯ ) is proved. If G is a connected bipartite graph or a split graph then gp(G G ¯ ) ∈ {n(G), n(G)+1}. Connected bipartite graphs and block graphs for which gp(G G ¯ ) = n(G) + 1 holds are characterized. A family of block graphs is constructed in which the gp-number of their complementary prisms is arbitrary smaller than their order.


2021 ◽  
Vol 1751 ◽  
pp. 012009
Author(s):  
K Prawinasti ◽  
M Ansori ◽  
Asmiati ◽  
Notiragayu ◽  
AR G N Rofi
Keyword(s):  

Author(s):  
Diane Castonguay ◽  
Erika Morais Martins Coelho ◽  
Hebert Coelho ◽  
Julliano Nascimento

In the geodetic convexity, a set of vertices $S$ of a graph $G$ is \textit{convex} if all vertices belonging to any shortest path between two vertices of $S$ lie in $S$. The \textit{convex hull} $H(S)$ of $S$ is the smallest convex set containing $S$. If $H(S) = V(G)$, then $S$ is a \textit{hull set}. The cardinality $h(G)$ of a minimum hull set of $G$ is the \textit{hull number} of $G$. The \textit{complementary prism} $G\overline{G}$ of a graph $G$ arises from the disjoint union of the graph $G$ and $\overline{G}$ by adding the edges of a perfect matching between the corresponding vertices of $G$ and $\overline{G}$. A graph $G$ is \textit{autoconnected} if both $G$ and $\overline{G}$ are connected. Motivated by previous work, we study the hull number for complementary prisms of autoconnected graphs. When $G$ is a split graph, we present lower and upper bounds showing that the hull number is unlimited. In the other case, when $G$ is a non-split graph, it is limited by $3$.


2020 ◽  
Vol 1569 ◽  
pp. 042074
Author(s):  
Fatanur Baity Tsulutsya ◽  
Evawati Alisah ◽  
Lailiy Kurnia Ilahi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document