Quantum Systems in Gravitational Fields. Berry Phases

2021 ◽  
pp. 1-28
Author(s):  
Gaetano Lambiase ◽  
Giorgio Papini
2018 ◽  
Vol 4 (10) ◽  
pp. eaat6533 ◽  
Author(s):  
Jin-Shi Xu ◽  
Kai Sun ◽  
Jiannis K. Pachos ◽  
Yong-Jian Han ◽  
Chuan-Feng Li ◽  
...  

Geometric phases, generated by cyclic evolutions of quantum systems, offer an inspiring playground for advancing fundamental physics and technologies alike. The exotic statistics of anyons realized in physical systems can be interpreted as a topological version of geometric phases. However, non-Abelian statistics has not yet been demonstrated in the laboratory. Here, we use an all-optical quantum system that simulates the statistical evolution of Majorana fermions. As a result, we experimentally realize non-Abelian Berry phases with the topological characteristic that they are invariant under continuous deformations of their control parameters. We implement a universal set of Majorana-inspired gates by performing topological and nontopological evolutions and investigate their resilience against perturbative errors. Our photonic experiment, though not scalable, suggests the intriguing possibility of experimentally simulating Majorana statistics with scalable technologies.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950293
Author(s):  
Pedro Sancho

We consider an unexplored aspect of the mass equivalence principle in the quantum realm, its connection with atomic stability. We show that if the gravitational mass were different from the inertial one, a Hydrogen atom placed in a constant gravitational field would become unstable in the long term. In contrast, independently of the relation between the two masses, the atom does not become ionized in a uniformly accelerated frame. This work, in the line of previous analyses studying the properties of quantum systems in gravitational fields, contributes to the extension of that program to internal variables.


2011 ◽  
Vol 20 (14) ◽  
pp. 2853-2859 ◽  
Author(s):  
C. S. UNNIKRISHNAN ◽  
G. T. GILLIES

There are discernible and fundamental differences between clocks, waves and physical states in classical physics. These fundamental concepts find a common expression in the context of quantum physics in gravitational fields; matter and light waves, quantum states and oscillator clocks become quantum synonymous through the Planck–Einstein–de Broglie relations and the equivalence principle. With this insight, gravitational effects on quantum systems can be simply and accurately analyzed. Apart from providing a transparent framework for conceptual and quantitative thinking on matter waves and quantum states in a gravitational field, we address and resolve with clarity the recent controversial discussions on the important issue of the relation and the crucial difference between gravimetery using atom interferometers and the measurement of gravitational time dilation.


1993 ◽  
Vol 163 (9) ◽  
pp. 1 ◽  
Author(s):  
B.D. Agap'ev ◽  
M.B. Gornyi ◽  
B.G. Matisov ◽  
Yu.V. Rozhdestvenskii

2018 ◽  
Vol 189 (05) ◽  
Author(s):  
Vladislav Yu. Shishkov ◽  
Evgenii S. Andrianov ◽  
Aleksandr A. Pukhov ◽  
Aleksei P. Vinogradov ◽  
A.A. Lisyansky

2000 ◽  
Vol 6 (1) ◽  
pp. 56-63
Author(s):  
K.K. Kamensky ◽  
V.S. Kislyuk ◽  
Ya.S. Yatskiv ◽  
◽  

Sign in / Sign up

Export Citation Format

Share Document