Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations

Author(s):  
Jan Cychnerski ◽  
Tomasz Dziubich
Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1384
Author(s):  
Yin Dai ◽  
Yifan Gao ◽  
Fayu Liu

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.


2020 ◽  
Author(s):  
Yang Liu ◽  
Lu Meng ◽  
Jianping Zhong

Abstract Background: For deep learning, the size of the dataset greatly affects the final training effect. However, in the field of computer-aided diagnosis, medical image datasets are often limited and even scarce.Methods: We aim to synthesize medical images and enlarge the size of the medical image dataset. In the present study, we synthesized the liver CT images with a tumor based on the mask attention generative adversarial network (MAGAN). We masked the pixels of the liver tumor in the image as the attention map. And both the original image and attention map were loaded into the generator network to obtain the synthesized images. Then the original images, the attention map, and the synthesized images were all loaded into the discriminator network to determine if the synthesized images were real or fake. Finally, we can use the generator network to synthesize liver CT images with a tumor.Results: The experiments showed that our method outperformed the other state-of-the-art methods, and can achieve a mean peak signal-to-noise ratio (PSNR) as 64.72dB.Conclusions: All these results indicated that our method can synthesize liver CT images with tumor, and build large medical image dataset, which may facilitate the progress of medical image analysis and computer-aided diagnosis.


2020 ◽  
Vol 1 (5) ◽  
Author(s):  
Sinh Van Nguyen ◽  
Ha Manh Tran ◽  
Truong Son Le

2005 ◽  
Vol 44 (02) ◽  
pp. 149-153 ◽  
Author(s):  
F. Estrella ◽  
C. del Frate ◽  
T. Hauer ◽  
M. Odeh ◽  
D. Rogulin ◽  
...  

Summary Objectives: The past decade has witnessed order of magnitude increases in computing power, data storage capacity and network speed, giving birth to applications which may handle large data volumes of increased complexity, distributed over the internet. Methods: Medical image analysis is one of the areas for which this unique opportunity likely brings revolutionary advances both for the scientist’s research study and the clinician’s everyday work. Grids [1] computing promises to resolve many of the difficulties in facilitating medical image analysis to allow radiologists to collaborate without having to co-locate. Results: The EU-funded MammoGrid project [2] aims to investigate the feasibility of developing a Grid-enabled European database of mammograms and provide an information infrastructure which federates multiple mammogram databases. This will enable clinicians to develop new common, collaborative and co-operative approaches to the analysis of mammographic data. Conclusion: This paper focuses on one of the key requirements for large-scale distributed mammogram analysis: resolving queries across a grid-connected federation of images.


Sign in / Sign up

Export Citation Format

Share Document