scholarly journals Resolving Clinicians’ Queries Across a Grid’s Infrastructure

2005 ◽  
Vol 44 (02) ◽  
pp. 149-153 ◽  
Author(s):  
F. Estrella ◽  
C. del Frate ◽  
T. Hauer ◽  
M. Odeh ◽  
D. Rogulin ◽  
...  

Summary Objectives: The past decade has witnessed order of magnitude increases in computing power, data storage capacity and network speed, giving birth to applications which may handle large data volumes of increased complexity, distributed over the internet. Methods: Medical image analysis is one of the areas for which this unique opportunity likely brings revolutionary advances both for the scientist’s research study and the clinician’s everyday work. Grids [1] computing promises to resolve many of the difficulties in facilitating medical image analysis to allow radiologists to collaborate without having to co-locate. Results: The EU-funded MammoGrid project [2] aims to investigate the feasibility of developing a Grid-enabled European database of mammograms and provide an information infrastructure which federates multiple mammogram databases. This will enable clinicians to develop new common, collaborative and co-operative approaches to the analysis of mammographic data. Conclusion: This paper focuses on one of the key requirements for large-scale distributed mammogram analysis: resolving queries across a grid-connected federation of images.

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1384
Author(s):  
Yin Dai ◽  
Yifan Gao ◽  
Fayu Liu

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.


2020 ◽  
Vol 7 ◽  
pp. 1-26 ◽  
Author(s):  
Silas Nyboe Ørting ◽  
Andrew Doyle ◽  
Arno Van Hilten ◽  
Matthias Hirth ◽  
Oana Inel ◽  
...  

Rapid advances in image processing capabilities have been seen across many domains, fostered by the  application of machine learning algorithms to "big-data". However, within the realm of medical image analysis, advances have been curtailed, in part, due to the limited availability of large-scale, well-annotated datasets. One of the main reasons for this is the high cost often associated with producing large amounts of high-quality meta-data. Recently, there has been growing interest in the application of crowdsourcing for this purpose; a technique that has proven effective for creating large-scale datasets across a range of disciplines, from computer vision to astrophysics. Despite the growing popularity of this approach, there has not yet been a comprehensive literature review to provide guidance to researchers considering using crowdsourcing methodologies in their own medical imaging analysis. In this survey, we review studies applying crowdsourcing to the analysis of medical images, published prior to July 2018. We identify common approaches, challenges and considerations, providing guidance of utility to researchers adopting this approach. Finally, we discuss future opportunities for development within this emerging domain.


2020 ◽  
Vol 7 ◽  
pp. 1-26
Author(s):  
Silas Nyboe Ørting ◽  
Andrew Doyle ◽  
Arno Van Hilten ◽  
Matthias Hirth ◽  
Oana Inel ◽  
...  

Rapid advances in image processing capabilities have been seen across many domains, fostered by the  application of machine learning algorithms to "big-data". However, within the realm of medical image analysis, advances have been curtailed, in part, due to the limited availability of large-scale, well-annotated datasets. One of the main reasons for this is the high cost often associated with producing large amounts of high-quality meta-data. Recently, there has been growing interest in the application of crowdsourcing for this purpose; a technique that has proven effective for creating large-scale datasets across a range of disciplines, from computer vision to astrophysics. Despite the growing popularity of this approach, there has not yet been a comprehensive literature review to provide guidance to researchers considering using crowdsourcing methodologies in their own medical imaging analysis. In this survey, we review studies applying crowdsourcing to the analysis of medical images, published prior to July 2018. We identify common approaches, challenges and considerations, providing guidance of utility to researchers adopting this approach. Finally, we discuss future opportunities for development within this emerging domain.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaoqing Liu ◽  
Kunlun Gao ◽  
Bo Liu ◽  
Chengwei Pan ◽  
Kongming Liang ◽  
...  

Importance. With the booming growth of artificial intelligence (AI), especially the recent advancements of deep learning, utilizing advanced deep learning-based methods for medical image analysis has become an active research area both in medical industry and academia. This paper reviewed the recent progress of deep learning research in medical image analysis and clinical applications. It also discussed the existing problems in the field and provided possible solutions and future directions. Highlights. This paper reviewed the advancement of convolutional neural network-based techniques in clinical applications. More specifically, state-of-the-art clinical applications include four major human body systems: the nervous system, the cardiovascular system, the digestive system, and the skeletal system. Overall, according to the best available evidence, deep learning models performed well in medical image analysis, but what cannot be ignored are the algorithms derived from small-scale medical datasets impeding the clinical applicability. Future direction could include federated learning, benchmark dataset collection, and utilizing domain subject knowledge as priors. Conclusion. Recent advanced deep learning technologies have achieved great success in medical image analysis with high accuracy, efficiency, stability, and scalability. Technological advancements that can alleviate the high demands on high-quality large-scale datasets could be one of the future developments in this area.


2021 ◽  
Author(s):  
Mohammed Adnan ◽  
Shivam Kalra ◽  
Jesse C. Cresswell ◽  
Graham W. Taylor ◽  
Hamid Tizhoosh

Abstract The artificial intelligence revolution has been spurred forward by the availability of large-scale datasets. In contrast, the paucity of large-scale medical datasets hinders the application of machine learning in healthcare. The lack of publicly available multi-centric and diverse datasets mainly stems from confidentiality and privacy concerns around sharing medical data. To demonstrate a feasible path forward in medical image imaging, we conduct a case study of applying a differentially private federated learning framework for analysis of histopathology images, the largest and perhaps most complex medical images. We study the effects of IID and non-IID distributions along with the number of healthcare providers, i.e., hospitals and clinics, and the individual dataset sizes, using The Cancer Genome Atlas (TCGA) dataset, a public repository, to simulate a distributed environment. We empirically compare the performance of private, distributed training to conventional training and demonstrate that distributed training can achieve similar performance with strong privacy guarantees. We also study the effect of different source domains for histopathology images by evaluating the performance using external validation. Our work indicates that differentially private federated learning is a viable and reliable framework for the collaborative development of machine learning models in medical image analysis.


2020 ◽  
Vol 13 (5) ◽  
pp. 999-1007
Author(s):  
Karthikeyan Periyasami ◽  
Arul Xavier Viswanathan Mariammal ◽  
Iwin Thanakumar Joseph ◽  
Velliangiri Sarveshwaran

Background: Medical image analysis application has complex resource requirement. Scheduling Medical image analysis application is the complex task to the grid resources. It is necessary to develop a new model to improve the breast cancer screening process. Proposed novel Meta scheduler algorithm allocate the image analyse applications to the local schedulers and local scheduler submit the job to the grid node which analyses the medical image and generates the result sent back to Meta scheduler. Meta schedulers are distinct from the local scheduler. Meta scheduler and local scheduler have the aim at resource allocation and management. Objective: The main objective of the CDAM meta-scheduler is to maximize the number of jobs accepted. Methods: In the beginning, the user sends jobs with the deadline to the global grid resource broker. Resource providers sent information about the available resources connected in the network at a fixed interval of time to the global grid resource broker, the information such as valuation of the resource and number of an available free resource. CDAM requests the global grid resource broker for available resources details and user jobs. After receiving the information from the global grid resource broker, it matches the job with the resources. CDAM sends jobs to the local scheduler and local scheduler schedule the job to the local grid site. Local grid site executes the jobs and sends the result back to the CDAM. Success full completion of the job status and resource status are updated into the auction history database. CDAM collect the result from all local grid site and return to the grid users. Results: The CDAM was simulated using grid simulator. Number of jobs increases then the percentage of the jobs accepted also decrease due to the scarcity of resources. CDAM is providing 2% to 5% better result than Fair share Meta scheduling algorithm. CDAM algorithm bid density value is generated based on the user requirement and user history and ask value is generated from the resource details. Users who, having the most significant deadline are generated the highest bid value, grid resource which is having the fastest processor are generated lowest ask value. The highest bid is assigned to the lowest Ask it means that the user who is having the most significant deadline is assigned to the grid resource which is having the fastest processor. The deadline represents a time by which the user requires the result. The user can define the deadline by which the results are needed, and the CDAM will try to find the fastest resource available in order to meet the user-defined deadline. If the scheduler detects that the tasks cannot be completed before the deadline, then the scheduler abandons the current resource, tries to select the next fastest resource and tries until the completion of application meets the deadline. CDAM is providing 25% better result than grid way Meta scheduler this is because grid way Meta scheduler allocate jobs to the resource based on the first come first served policy. Conclusion: The proposed CDAM model was validated through simulation and was evaluated based on jobs accepted. The experimental results clearly show that the CDAM model maximizes the number of jobs accepted than conventional Meta scheduler. We conclude that a CDAM is highly effective meta-scheduler systems and can be used for an extraordinary situation where jobs have a combinatorial requirement.


Author(s):  
Sanket Singh ◽  
Sarthak Jain ◽  
Akshit Khanna ◽  
Anupam Kumar ◽  
Ashish Sharma

Sign in / Sign up

Export Citation Format

Share Document