AOPL: Attention Enhanced Oversampling and Parallel Deep Learning Model for Attack Detection in Imbalanced Network Traffic

2021 ◽  
pp. 84-95
Author(s):  
Leiqi Wang ◽  
Weiqing Huang ◽  
Qiujian Lv ◽  
Yan Wang ◽  
HaiYan Chen
2021 ◽  
Author(s):  
Mohammed Y. Alzahrani ◽  
Alwi M Bamhdi

Abstract In recent years, the use of the internet of things (IoT) has increased dramatically, and cybersecurity concerns have grown in tandem. Cybersecurity has become a major challenge for institutions and companies of all sizes, with the spread of threats growing in number and developing at a rapid pace. Artificial intelligence (AI) in cybersecurity can to a large extent help face the challenge, since it provides a powerful framework and coordinates that allow organisations to stay one step ahead of sophisticated cyber threats. AI provides real-time feedback, helping rollover daily alerts to be investigated and analysed, effective decisions to be made and enabling quick responses. AI-based capabilities make attack detection, security and mitigation more accurate for intelligence gathering and analysis, and they enable proactive protective countermeasures to be taken to overwhelm attacks. In this study, we propose a robust system specifically to help detect botnet attacks of IoT devices. This was done by innovatively combining the model of a convolutional neural network with a long short-term memory algorithm mechanism to detect two common and serious IoT attacks (BASHLITE and Mirai) on four types of security camera. The data sets, which contained normal malicious network packets, were collected from real-time lab-connected camera devices in IoT environments. The results of the experiment showed that the proposed system achieved optimal performance, according to evaluation metrics. The proposed system gave the following weighted average results for detecting the botnet on the Provision PT-737E camera: camera precision: 88%, recall: 87% and F1 score: 83%. The results of system for classifying botnet attacks and normal packets on the Provision PT-838 camera were 89% for recall, 85% for F1 score and 94%, precision. The intelligent security system using the advanced deep learning model was successful for detecting botnet attacks that infected camera devices connected to IoT applications.


2021 ◽  
Vol 15 (01) ◽  
pp. 35-41
Author(s):  
Choukri Djellali ◽  
Mehdi adda

In recent years, Deep Learning has become a critical success factor for Machine Learning. In the present study, we introduced a Deep Learning model to network attack detection, by using Hidden Markov Model and Artificial Neural Networks. We used a model aggregation technique to find a single consolidated Deep Learning model for better data fitting. The model selection technique is applied to optimize the bias-variance trade-off of the expected prediction. We demonstrate its ability to reduce the convergence, reach the optimal solution and obtain more cluttered decision boundaries. Experimental studies conducted on attack detection indicate that our proposed model outperformed existing Deep Learning models and gives an enhanced generalization.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 30387-30399 ◽  
Author(s):  
Ren-Hung Hwang ◽  
Min-Chun Peng ◽  
Chien-Wei Huang ◽  
Po-Ching Lin ◽  
Van-Linh Nguyen

2021 ◽  
Vol 12 (1) ◽  
pp. 114-139
Author(s):  
Hassan I. Ahmed ◽  
Abdurrahman A. Nasr ◽  
Salah M. Abdel-Mageid ◽  
Heba K. Aslan

Nowadays, Internet of Things (IoT) is considered as part our lives and it includes different aspects - from wearable devices to smart devices used in military applications. IoT connects a variety of devices and as such, the generated data is considered as ‘Big Data'. There has however been an increase in attacks in this era of IoT since IoT carries crucial information regarding banking, environmental, geographical, medical, and other aspects of the daily lives of humans. In this paper, a Distributed Attack Detection Model (DADEM) that combines two techniques - Deep Learning and Big Data analytics - is proposed. Sequential Deep Learning model is chosen as a classification engine for the distributed processing model after testing its classification accuracy against other classification algorithms like logistic regression, KNN, ID3 decision tree, CART, and SVM. Results showed that Sequential Deep Learning model outperforms the aforementioned ones. The classification accuracy of DADEM approaches 99.64% and 99.98% for the UNSW-NB15 and BoT-IoT datasets, respectively. Moreover, a plan is proposed for optimizing the proposed model to reduce the overhead of the overall system operation in a constrained environment like IoT.


Sign in / Sign up

Export Citation Format

Share Document