Effect of Distributed Dislocations on Large Deformations of Cylindrical Tube made of Micropolar Elastic Material

Author(s):  
Leonid M. Zubov ◽  
Evgeniya V. Goloveshkina
2019 ◽  
Vol 484 (5) ◽  
pp. 547-549
Author(s):  
Yu. N. Kulchin ◽  
V. E. Ragozina ◽  
O. V. Dudko

General theoretical relations for calculating the redistribution of the preliminary irreversible strain field during unloading or elastic loading of a medium are obtained for the nonlinear multiplicative gradient model of large elastic-plastic deformations. It is shown that the dynamics of elastic shock waves does not depend directly on the previously accumulated plastic strains. A formula for the plastic-strain rotation tensor is obtained. It is shown that rigid rotation of plastic strains under elastic shock waves can be jump-like. All results are obtained for the general case of model relations of isotropic media and are valid for both compressible and incompressible materials.


1978 ◽  
Vol 87 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Hüsnü Tözeren ◽  
Richard Skalak

The steady flow of a suspension of closely fitting, neutrally buoyant, incompressible and elastic spheres through a circular cylindrical tube is investigated under the assumption that lubrication theory is valid in the fluid region. A series solution giving the displacement field of an elastic incompressible sphere under axisymmetrically distributed surface tractions is developed. It is found that, for closely fitting particles, flow properties of the suspension are strongly dependent on the shear modulus of the elastic material and the velocity of the particle.


Expressions for the components of strain and the incompressibility condition, for large deformations, are obtained in a cylindrical polar co-ordinate system. The stress-strain relations, equations of motion and boundary conditions for an incompressible, neo-Hookean material, in such a coordinate system, are also obtained and specialized to the case of cylindrical symmetry. These results are applied to the special cases of the simple torsion of a solid cylinder and of a hollow, cylindrical tube and to their combined simple extension and simple torsion. In the case of a solid cylinder, it is found that a state of simple torsion can be maintained by surface tractions applied to the ends of the cylinder only, and these consist of a torsional couple together with a compressive force. The necessary torsional couple is proportional to the amount of torsion and the compressive force to the square of the torsion. In the case of a hollow, cylindrical tube, it is again necessary to exert a torsional couple, proportional to the torsion, and a compressive force, proportional to the square of the torsion, on the plane ends, but it is also necessary to exert a normal surface traction, acting in a positive radial direction, on one or other of the curved surfaces of the tube and proportional to the square of the torsion.


1968 ◽  
Vol 64 (2) ◽  
pp. 565-572 ◽  
Author(s):  
H. R. Chaudhry ◽  
A. N. Chawla

AbstractThe theory of large elastic deformation of reinforced elastic materials is applied to discuss the rotation of a circular tube of incompressible elastic material, reinforced with inextensible cords lying along helical paths.


2019 ◽  
Vol 484 (5) ◽  
pp. 542-546
Author(s):  
L. M. Zubov

The problem of large deformations in a combined nonlinear elastic hollow cylinder under internal and external pressures, loaded with a longitudinal force and torque at the end faces, is under consideration. The combined cylinder is a tube with the internal and external coatings in the form of prestressed hollow circular cylinders. An exact solution to the problem is found, which is valid for any model of isotropic incompressible elastic materials.


Sign in / Sign up

Export Citation Format

Share Document