The steady flow of closely fitting incompressible elastic spheres in a tube

1978 ◽  
Vol 87 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Hüsnü Tözeren ◽  
Richard Skalak

The steady flow of a suspension of closely fitting, neutrally buoyant, incompressible and elastic spheres through a circular cylindrical tube is investigated under the assumption that lubrication theory is valid in the fluid region. A series solution giving the displacement field of an elastic incompressible sphere under axisymmetrically distributed surface tractions is developed. It is found that, for closely fitting particles, flow properties of the suspension are strongly dependent on the shear modulus of the elastic material and the velocity of the particle.

1968 ◽  
Vol 64 (2) ◽  
pp. 565-572 ◽  
Author(s):  
H. R. Chaudhry ◽  
A. N. Chawla

AbstractThe theory of large elastic deformation of reinforced elastic materials is applied to discuss the rotation of a circular tube of incompressible elastic material, reinforced with inextensible cords lying along helical paths.


2021 ◽  
Vol 127 (1) ◽  
Author(s):  
Luis Dorfmann ◽  
Ray W. Ogden

AbstractResidual stresses in an unloaded configuration of an elastic material have a significant influence on the response of the material from that configuration, but the effect of residual stress on the stability of the material, whether loaded or unloaded, has only been addressed to a limited extent. In this paper we consider the level of residual stress that can be supported in a thick-walled circular cylindrical tube of non-linearly elastic material without loss of stability when subjected to fixed axial stretch and either internal or external pressure. In particular, we consider the tube to have radial and circumferential residual stresses, with a simple form of elastic constitutive law that accommodates the residual stress, and incremental deformations restricted to the cross section of the tube. Results are described for a tube subject to a level of (internal or external) pressure characterized by the internal azimuthal stretch. Subject to restrictions imposed by the strong ellipticity condition, the emergence of bifurcated solutions is detailed for their dependence on the level of residual stress and mode number.


1956 ◽  
Vol 23 (1) ◽  
pp. 91-96
Author(s):  
M. A. Biot

Abstract Equations of elasticity and consolidation for a porous elastic material containing a fluid have been previously established (1, 5). General solutions of these equations for the isotropic case are developed, giving directly the displacement field or the stress field in analogy with the Boussinesq-Papkovitch solution and the stress functions of the theory of elasticity. General properties of the solutions also are examined and the viewpoint of eigenfunctions in consolidation problems is introduced.


Biorheology ◽  
1992 ◽  
Vol 29 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Takayoshi Matsumoto ◽  
Masahiro Kawai ◽  
Toshiro Masuda

2013 ◽  
Vol 724 ◽  
pp. 95-122 ◽  
Author(s):  
C. Ancey ◽  
N. Andreini ◽  
G. Epely-Chauvin

AbstractThis paper addresses the dam-break problem for particle suspensions, that is, the flow of a finite volume of suspension released suddenly down an inclined flume. We were concerned with concentrated suspensions made up of neutrally buoyant non-colloidal particles within a Newtonian fluid. Experiments were conducted over wide ranges of slope, concentration and mass. The major contributions of our experimental study are the simultaneous measurement of local flow properties far from the sidewalls (velocity profile and, with lower accuracy, particle concentration) and macroscopic features (front position, flow depth profile). To that end, the refractive index of the fluid was adapted to closely match that of the particles, enabling data acquisition up to particle volume fractions of 60 %. Particle migration resulted in the blunting of the velocity profile, in contrast to the parabolic profile observed in homogeneous Newtonian fluids. The experimental results were compared with predictions from lubrication theory and particle migration theory. For solids fractions as large as 45 %, the flow behaviour did not differ much from that of a homogeneous Newtonian fluid. More specifically, we observed that the velocity profiles were closely approximated by a parabolic form and there was little evidence of particle migration throughout the depth. For particle concentrations in the 52–56 % range, the flow depth and front position were fairly well predicted by lubrication theory, but taking a closer look at the velocity profiles revealed that particle migration had noticeable effects on the shape of the velocity profile (blunting), but had little impact on its strength, which explained why lubrication theory performed well. Particle migration theories (such as the shear-induced diffusion model) successfully captured the slow evolution of the velocity profiles. For particle concentrations in excess of 56 %, the macroscopic flow features were grossly predicted by lubrication theory (to within 20 % for the flow depth, 50 % for the front position). The flows seemed to reach a steady state, i.e. the shape of the velocity profile showed little time dependence.


Sign in / Sign up

Export Citation Format

Share Document