scholarly journals Explicit Non-normal Modal Logic

2021 ◽  
pp. 64-81
Author(s):  
Atefeh Rohani ◽  
Thomas Studer
2018 ◽  
Vol 11 (3) ◽  
pp. 436-469 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
NICK BEZHANISHVILI ◽  
JULIA ILIN

AbstractStable logics are modal logics characterized by a class of frames closed under relation preserving images. These logics admit all filtrations. Since many basic modal systems such as K4 and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or S4. We give several characterizations of M-stable logics. We prove that there are continuum many S4-stable logics and continuum many K4-stable logics between K4 and S4. We axiomatize K4-stable and S4-stable logics by means of stable formulas and discuss the connection between S4-stable logics and stable superintuitionistic logics. We conclude the article with many examples (and nonexamples) of stable, K4-stable, and S4-stable logics and provide their axiomatization in terms of stable rules and formulas.


1981 ◽  
Vol 40 (1) ◽  
pp. 47-67 ◽  
Author(s):  
P. K. Schotch ◽  
R. E. Jennings

Studia Logica ◽  
1987 ◽  
Vol 46 (4) ◽  
pp. 291-309 ◽  
Author(s):  
Slavian Radev

2019 ◽  
Vol 13 (2) ◽  
pp. 416-435 ◽  
Author(s):  
SERGEI P. ODINTSOV ◽  
STANISLAV O. SPERANSKI

AbstractWe shall be concerned with the modal logic BK—which is based on the Belnap–Dunn four-valued matrix, and can be viewed as being obtained from the least normal modal logic K by adding ‘strong negation’. Though all four values ‘truth’, ‘falsity’, ‘neither’ and ‘both’ are employed in its Kripke semantics, only the first two are expressible as terms. We show that expanding the original language of BK to include constants for ‘neither’ or/and ‘both’ leads to quite unexpected results. To be more precise, adding one of these constants has the effect of eliminating the respective value at the level of BK-extensions. In particular, if one adds both of these, then the corresponding lattice of extensions turns out to be isomorphic to that of ordinary normal modal logics.


2016 ◽  
Vol 81 (1) ◽  
pp. 284-315 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
NICK BEZHANISHVILI ◽  
ROSALIE IEMHOFF

AbstractWe introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable canonical rules. We also define stable multi-conclusion consequence relations and stable logics and prove that these systems have the finite model property. We conclude the paper with a number of examples of stable and nonstable systems, and show how to axiomatize them.


Author(s):  
Luca Incurvati ◽  
Julian J. Schlöder

AbstractMany classically valid meta-inferences fail in a standard supervaluationist framework. This allegedly prevents supervaluationism from offering an account of good deductive reasoning. We provide a proof system for supervaluationist logic which includes supervaluationistically acceptable versions of the classical meta-inferences. The proof system emerges naturally by thinking of truth as licensing assertion, falsity as licensing negative assertion and lack of truth-value as licensing rejection and weak assertion. Moreover, the proof system respects well-known criteria for the admissibility of inference rules. Thus, supervaluationists can provide an account of good deductive reasoning. Our proof system moreover brings to light how one can revise the standard supervaluationist framework to make room for higher-order vagueness. We prove that the resulting logic is sound and complete with respect to the consequence relation that preserves truth in a model of the non-normal modal logic NT. Finally, we extend our approach to a first-order setting and show that supervaluationism can treat vagueness in the same way at every order. The failure of conditional proof and other meta-inferences is a crucial ingredient in this treatment and hence should be embraced, not lamented.


2019 ◽  
pp. 149-161
Author(s):  
Luciano Floridi

In this chapter, the principle of information closure (PIC) is defined and defended against a sceptical objection similar to the one discussed by Dretske in relation to the principle of epistemic closure. If successful, given that PIC is equivalent to the axiom of distribution and that the latter is one of the conditions that discriminate between normal and non-normal modal logics, one potentially good reason to look for a formalization of the logic of ‘S is informed that p’ among the non-normal modal logics, which reject the axiom, is also removed. This is not to argue that the logic of ‘S is informed that p’ should be a normal modal logic, but that it could still be, insofar as the objection that it could not be, based on the sceptical objection against PIC, has been removed. In other words, this chapter argues that the sceptical objection against PIC fails, so such an objection provides no ground to abandon the normal modal logic B (also known as KTB) as a formalization of ‘S is informed that p’, which remains plausible insofar as this specific obstacle is concerned.


Sign in / Sign up

Export Citation Format

Share Document