BELNAP–DUNN MODAL LOGICS: TRUTH CONSTANTS VS. TRUTH VALUES

2019 ◽  
Vol 13 (2) ◽  
pp. 416-435 ◽  
Author(s):  
SERGEI P. ODINTSOV ◽  
STANISLAV O. SPERANSKI

AbstractWe shall be concerned with the modal logic BK—which is based on the Belnap–Dunn four-valued matrix, and can be viewed as being obtained from the least normal modal logic K by adding ‘strong negation’. Though all four values ‘truth’, ‘falsity’, ‘neither’ and ‘both’ are employed in its Kripke semantics, only the first two are expressible as terms. We show that expanding the original language of BK to include constants for ‘neither’ or/and ‘both’ leads to quite unexpected results. To be more precise, adding one of these constants has the effect of eliminating the respective value at the level of BK-extensions. In particular, if one adds both of these, then the corresponding lattice of extensions turns out to be isomorphic to that of ordinary normal modal logics.

2019 ◽  
pp. 149-161
Author(s):  
Luciano Floridi

In this chapter, the principle of information closure (PIC) is defined and defended against a sceptical objection similar to the one discussed by Dretske in relation to the principle of epistemic closure. If successful, given that PIC is equivalent to the axiom of distribution and that the latter is one of the conditions that discriminate between normal and non-normal modal logics, one potentially good reason to look for a formalization of the logic of ‘S is informed that p’ among the non-normal modal logics, which reject the axiom, is also removed. This is not to argue that the logic of ‘S is informed that p’ should be a normal modal logic, but that it could still be, insofar as the objection that it could not be, based on the sceptical objection against PIC, has been removed. In other words, this chapter argues that the sceptical objection against PIC fails, so such an objection provides no ground to abandon the normal modal logic B (also known as KTB) as a formalization of ‘S is informed that p’, which remains plausible insofar as this specific obstacle is concerned.


1999 ◽  
Vol 64 (1) ◽  
pp. 99-138 ◽  
Author(s):  
Marcus Kracht ◽  
Frank Wolter

AbstractThis paper shows that non-normal modal logics can be simulated by certain polymodal normal logics and that polymodal normal logics can be simulated by monomodal (normal) logics. Many properties of logics are shown to be reflected and preserved by such simulations. As a consequence many old and new results in modal logic can be derived in a straightforward way, sheding new light on the power of normal monomodal logic.


2019 ◽  
Vol 30 (2) ◽  
pp. 549-560 ◽  
Author(s):  
Mikhail Rybakov ◽  
Dmitry Shkatov

Abstract We investigate the relationship between recursive enumerability and elementary frame definability in first-order predicate modal logic. On one hand, it is well known that every first-order predicate modal logic complete with respect to an elementary class of Kripke frames, i.e. a class of frames definable by a classical first-order formula, is recursively enumerable. On the other, numerous examples are known of predicate modal logics, based on ‘natural’ propositional modal logics with essentially second-order Kripke semantics, that are either not recursively enumerable or Kripke incomplete. This raises the question of whether every Kripke complete, recursively enumerable predicate modal logic can be characterized by an elementary class of Kripke frames. We answer this question in the negative, by constructing a normal predicate modal logic which is Kripke complete, recursively enumerable, but not complete with respect to an elementary class of frames. We also present an example of a normal predicate modal logic that is recursively enumerable, Kripke complete, and not complete with respect to an elementary class of rooted frames, but is complete with respect to an elementary class of frames that are not rooted.


2018 ◽  
Vol 11 (3) ◽  
pp. 436-469 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
NICK BEZHANISHVILI ◽  
JULIA ILIN

AbstractStable logics are modal logics characterized by a class of frames closed under relation preserving images. These logics admit all filtrations. Since many basic modal systems such as K4 and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or S4. We give several characterizations of M-stable logics. We prove that there are continuum many S4-stable logics and continuum many K4-stable logics between K4 and S4. We axiomatize K4-stable and S4-stable logics by means of stable formulas and discuss the connection between S4-stable logics and stable superintuitionistic logics. We conclude the article with many examples (and nonexamples) of stable, K4-stable, and S4-stable logics and provide their axiomatization in terms of stable rules and formulas.


1991 ◽  
Vol 14 (3) ◽  
pp. 355-366
Author(s):  
Mirosław Truszczynski

In the paper we study a family of modal nonmonotonic logics closely related to the family of modal nonmonotonic logics proposed by McDermott and Doyle. For a modal logic S and a fixed collection of formulas X we introduce the notion of an ( S, X)-expansion. We restrict to modal logics which have a complete Kripke semantics. We study the properties of ( S, X)-expansions and show that in many respects they are analogous to the properties of S-expansions in nonmonotonic modal logics of McDermott and Doyle.


1987 ◽  
Vol 52 (2) ◽  
pp. 494-511 ◽  
Author(s):  
Franco Montagna

By Solovay's theorem [16], the modal logic of provability GL gives a complete description of the propositional schemata involving the provability predicate PrPA(x) for Peano arithmetic PA, which are provable in PA. However, many important aspects of provability cannot be fully expressed in terms of PrPA(x). For this reason, many authors have introduced extensions of GL which take account either of Rosser constructions or of other important metamathematical formulas (see, for example, [5], [6], [14], [16], and [19]). In this paper, we concentrate on the modal logic of the provability predicate for finitely axiomatizable subtheories of PA; the interest of this modal logic is based on the following facts. First of all, it provides a modal translation of a very important property of PA, namely the essential reflexiveness. Secondly, in view of Orey's theorem [10] it constitutes a possible approach to the study of interpretability of finite extensions of PA. Indeed, by Orey's theorem PA + θ is interpretable in PA + θ′ iff for every n, and, therefore, relative interpretability of finitely axiomatizable extensions of PA can be expressed by means of the provability predicate for finitely axiomatizable subtheories of PA.In §1, we introduce three modal logics extending GL and discuss their arithmetical interpretations; §2 deals with Kripke semantics for two of these logics. In §3, a theorem on arithmetical completeness is shown, which characterizes the logic of the provability predicate for finitely axiomatizable subtheories of PA; a uniform version of this theorem is proved in §4.


1986 ◽  
Vol 51 (4) ◽  
pp. 969-980 ◽  
Author(s):  
George Weaver ◽  
Jeffrey Welaish

The following is a contribution to the abstract study of the model theory of modal logics. Historically, individual modal logics have been specified deductively; and, as a result, it has seemed natural to view modal logics as sets of sentences provable in some deductive system. This proof theoretic view has influenced the abstract study of modal logics. For example, Fine [1975] defines a modal logic to be any set of sentences in the modal language L□ which contains all tautologies, all instances of the schema (□(ϕ ⊃ Ψ) ⊃ (□ϕ ⊃ □Ψ)), and which is closed under modus ponens, necessitation and substitution.Here, however, modal logics are equated with classes of “possible world” interpretations. “Worlds” are taken to be ordered pairs (a, λ), where a is a sentential interpretation and λ is an ordinal. Properties of the accessibility relation are identified with those classes of binary relational systems closed under isomorphisms. The origin of this approach is the study of alternative Kripke semantics for the normal modal logics (cf. Weaver [1973]). It is motivated by the desire that modal logics provide accounts of both logical truth and logical consequence (cf. Corcoran and Weaver [1969]) and the realization that there are alternative Kripke semantics for S4, B and M which give identical accounts of logical truth, but different accounts of logical consequence (cf. Weaver [1973]). It is shown that the Craig interpolation theorem holds for any modal logic which has characteristic modal axioms and whose associated class of binary relational systems is closed under subsystems and finite direct products. The argument uses a back and forth construction to establish a modal analogue of Robinson's theorem. The argument for the interpolation theorem from Robinson's theorem employs modal analogues of the Ehrenfeucht-Fraïssé characterization of elementary equivalence and Hintikka's distributive normal form, and is itself a modal analogue of a first order argument (cf. Weaver [1982]).


2018 ◽  
Vol 27 (5) ◽  
pp. 639-658 ◽  
Author(s):  
Philippe Balbiani

Abstract The problem of unification in a normal modal logic $L$ can be defined as follows: given a formula $\varphi$, determine whether there exists a substitution $\sigma$ such that $\sigma (\varphi )$ is in $L$. In this paper, we prove that for several non-symmetric non-transitive modal logics, there exists unifiable formulas that possess no minimal complete set of unifiers.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 128
Author(s):  
Lorenz Demey

Aristotelian diagrams, such as the square of opposition, are well-known in the context of normal modal logics (i.e., systems of modal logic which can be given a relational semantics in terms of Kripke models). This paper studies Aristotelian diagrams for non-normal systems of modal logic (based on neighborhood semantics, a topologically inspired generalization of relational semantics). In particular, we investigate the phenomenon of logic-sensitivity of Aristotelian diagrams. We distinguish between four different types of logic-sensitivity, viz. with respect to (i) Aristotelian families, (ii) logical equivalence of formulas, (iii) contingency of formulas, and (iv) Boolean subfamilies of a given Aristotelian family. We provide concrete examples of Aristotelian diagrams that illustrate these four types of logic-sensitivity in the realm of normal modal logic. Next, we discuss more subtle examples of Aristotelian diagrams, which are not sensitive with respect to normal modal logics, but which nevertheless turn out to be highly logic-sensitive once we turn to non-normal systems of modal logic.


Sign in / Sign up

Export Citation Format

Share Document