Extraction of the Top Quark Mass and the Strong Coupling Constant

Author(s):  
Matteo M. Defranchis
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
David Dunsky ◽  
Lawrence J. Hall ◽  
Keisuke Harigaya

Abstract The vanishing of the Higgs quartic coupling at a high energy scale may be explained by Intermediate Scale Supersymmetry, where supersymmetry breaks at (109-1012) GeV. The possible range of supersymmetry breaking scales can be narrowed down by precise measurements of the top quark mass and the strong coupling constant. On the other hand, nuclear recoil experiments can probe Higgsino or sneutrino dark matter up to a mass of 1012 GeV. We derive the correlation between the dark matter mass and precision measurements of standard model parameters, including supersymmetric threshold corrections. The dark matter mass is bounded from above as a function of the top quark mass and the strong coupling constant. The top quark mass and the strong coupling constant are bounded from above and below respectively for a given dark matter mass. We also discuss how the observed dark matter abundance can be explained by freeze-out or freeze-in during a matter-dominated era after inflation, with the inflaton condensate being dissipated by thermal effects.


1991 ◽  
Vol 06 (35) ◽  
pp. 3225-3237 ◽  
Author(s):  
T. E. CLARK ◽  
S. T. LOVE ◽  
W. T. A. TER VELDHUIS

The top quark mass prediction in supersymmetric top condensate models is found to be insensitive to the inclusion of the effects of higher dimensional operators. For associated coefficients of characteristically moderate strength, the supersymmetric renormalization group trajectories are strongly focused to the infrared quasi-fixed point of the top Yukawa coupling constant.


Sign in / Sign up

Export Citation Format

Share Document