top quark mass
Recently Published Documents


TOTAL DOCUMENTS

535
(FIVE YEARS 42)

H-INDEX

49
(FIVE YEARS 5)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Joshua Davies ◽  
Florian Herren ◽  
Go Mishima ◽  
Matthias Steinhauser

Abstract In this paper we consider the next-to-next-to-leading order total cross section of Higgs boson pair production in the large top quark mass limit and compute four expansion terms in 1/$$ {m}_t^2 $$ m t 2 . To this end, we analytically compute the real-virtual and double-real contributions to the total cross section and combine them with the existing virtual contribution. Good convergence is observed below the top quark threshold, which makes our results a valuable input for approximation methods which aim for next-to-next-to-leading order corrections over the whole kinematic range. We present details on various steps of our calculation; in particular, we provide results for three- and four-particle phase-space master integrals and describe in detail the evaluation of the collinear counterterms.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
◽  
A. Tumasyan ◽  
W. Adam ◽  
J. W. Andrejkovic ◽  
T. Bergauer ◽  
...  

Abstract A measurement of the top quark mass is performed using a data sample enriched with single top quark events produced in the t channel. The study is based on proton- proton collision data, corresponding to an integrated luminosity of 35.9 fb−1, recorded at $$ \sqrt{s} $$ s = 13 TeV by the CMS experiment at the LHC in 2016. Candidate events are selected by requiring an isolated high-momentum lepton (muon or electron) and exactly two jets, of which one is identified as originating from a bottom quark. Multivariate discriminants are designed to separate the signal from the background. Optimized thresholds are placed on the discriminant outputs to obtain an event sample with high signal purity. The top quark mass is found to be $$ {172.13}_{-0.77}^{+0.76} $$ 172.13 − 0.77 + 0.76 GeV, where the uncertainty includes both the statistical and systematic components, reaching sub-GeV precision for the first time in this event topology. The masses of the top quark and antiquark are also determined separately using the lepton charge in the final state, from which the mass ratio and difference are determined to be $$ {0.9952}_{-0.0104}^{+0.0079} $$ 0.9952 − 0.0104 + 0.0079 and $$ {0.83}_{-1.35}^{+1.79} $$ 0.83 − 1.35 + 1.79 GeV, respectively. The results are consistent with CPT invariance.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jamerson G. Rodrigues ◽  
Micol Benetti ◽  
Jailson S. Alcaniz

Abstract In this work, we revisit the non-minimally coupled Higgs Inflation scenario and investigate its observational viability in light of the current Cosmic Microwave Background, Baryon Acoustic Oscillation and type Ia Supernovae data. We explore the effects of the Coleman-Weinberg approximation to the Higgs potential in the primordial universe, connecting the predictions for the Lagrangian parameters at inflationary scales to the electroweak observables through Renormalization Group methods at two-loop order. Initially, we find that electroweak scale measurements may be dissonant to the limits obtained from the cosmological data sets used in the analysis. Specifically, an ≈ 8σ-discrepancy between the inflationary parameters and the value of the Monte Carlo reconstructed top quark mass is found. However, considering the most recent results obtained by the CMS Collaboration from differential cross-section measurements of the top quark production a good agreement is obtained.


2021 ◽  
Vol 127 (16) ◽  
Author(s):  
M. Czakon ◽  
R. V. Harlander ◽  
J. Klappert ◽  
M. Niggetiedt

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Astrid Eichhorn ◽  
Martin Pauly ◽  
Shouryya Ray

Abstract There are indications that an asymptotically safe UV completion of the Standard Model with gravity could constrain the Higgs self-coupling, resulting in a prediction of the Higgs mass close to the vacuum stability bound in the Standard Model. The predicted value depends on the top quark mass and comes out somewhat higher than the experimental value if the current central value for the top quark mass is assumed. Beyond the Standard Model, the predicted value also depends on dark fields coupled through a Higgs portal. Here we study the Higgs self-coupling in a toy model of the Standard Model with quantum gravity that we extend by a dark scalar and fermion. Within the approximations used in [1], there is a single free parameter in the asymptotically safe dark sector, as a function of which the predicted (toy model) Higgs mass can be lowered due to mixing effects if the dark sector undergoes spontaneous symmetry breaking.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Michał Czakon ◽  
Terry Generet ◽  
Alexander Mitov ◽  
Rene Poncelet

Abstract We calculate, for the first time, the NNLO QCD corrections to identified heavy hadron production at hadron colliders. The calculation is based on a flexible numeric framework which allows the calculation of any distribution of a single identified heavy hadron plus jets and non-QCD particles. As a first application we provide NNLO QCD predictions for several differential distributions of B hadrons in t$$ \overline{t} $$ t ¯ events at the LHC. Among others, these predictions are needed for the precise determination of the top quark mass. The extension of our results to other processes, like open or associated B and charm production is straightforward. We also explore the prospects for extracting heavy flavor fragmentation functions from LHC data.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Forrest Flesher ◽  
Katherine Fraser ◽  
Charles Hutchison ◽  
Bryan Ostdiek ◽  
Matthew D. Schwartz

Abstract One of the key tasks of any particle collider is measurement. In practice, this is often done by fitting data to a simulation, which depends on many parameters. Sometimes, when the effects of varying different parameters are highly correlated, a large ensemble of data may be needed to resolve parameter-space degeneracies. An important example is measuring the top-quark mass, where other physical and unphysical parameters in the simulation must be profiled when fitting the top-quark mass parameter. We compare four different methodologies for top-quark mass measurement: a classical histogram fit similar to one commonly used in experiment augmented by soft-drop jet grooming; a 2D profile likelihood fit with a nuisance parameter; a machine-learning method called DCTR; and a linear regression approach, either using a least-squares fit or with a dense linearly-activated neural network. Despite the fact that individual events are totally uncorrelated, we find that the linear regression methods work most effectively when we input an ensemble of events sorted by mass, rather than training them on individual events. Although all methods provide robust extraction of the top-quark mass parameter, the linear network does marginally best and is remarkably simple. For the top study, we conclude that the Monte-Carlo-based uncertainty on current extractions of the top-quark mass from LHC data can be reduced significantly (by perhaps a factor of 2) using networks trained on sorted event ensembles. More generally, machine learning from ensembles for parameter estimation has broad potential for collider physics measurements.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
K. Nowak ◽  
A.F. Żarnecki

Abstract One of the important goals at the future e+e− colliders is to measure the top-quark mass and width in a scan of the pair production threshold. However, the shape of the pair-production cross section at the threshold depends also on other model parameters, as the top Yukawa coupling, and the measurement is a subject to many systematic uncertainties. Presented in this work is the study of the top-quark mass determination from the threshold scan at CLIC. The most general approach is used with all relevant model parameters and selected systematic uncertainties included in the fit procedure. Expected constraints from other measurements are also taken into account. It is demonstrated that the top-quark mass can be extracted with precision of the order of 30 to 40 MeV, including considered systematic uncertainties, already for 100 fb−1 of data collected at the threshold. Additional improvement is possible, if the running scenario is optimised. With the optimisation procedure based on the genetic algorithm the statistical uncertainty of the mass measurement can be reduced by about 20%. Influence of the collider luminosity spectra on the expected precision of the measurement is also studied.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Christian Brønnum-Hansen ◽  
Chen-Yu Wang

Abstract We compute the top quark contribution to the two-loop amplitude for on-shell Z boson pair production in gluon fusion, gg → ZZ. Exact dependence on the top quark mass is retained. For each phase space point the integral reduction is performed numerically and the master integrals are evaluated using the auxiliary mass flow method, allowing fast computation of the amplitude with very high precision.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Bakul Agarwal ◽  
Stephen P. Jones ◽  
Andreas von Manteuffel

Abstract We calculate the two-loop QCD corrections to gg → ZZ involving a closed top-quark loop. We present a new method to systematically construct linear combinations of Feynman integrals with a convergent parametric representation, where we also allow for irreducible numerators, higher powers of propagators, dimensionally shifted integrals, and subsector integrals. The amplitude is expressed in terms of such finite integrals by employing syzygies derived with linear algebra and finite field techniques. Evaluating the amplitude using numerical integration, we find agreement with previous expansions in asymptotic limits and provide ab initio results also for intermediate partonic energies and non-central scattering at higher energies.


Sign in / Sign up

Export Citation Format

Share Document