BCN-GCN: A Novel Brain Connectivity Network Classification Method via Graph Convolution Neural Network for Alzheimer’s Disease

2021 ◽  
pp. 657-668
Author(s):  
Peiyi Gu ◽  
Xiaowen Xu ◽  
Ye Luo ◽  
Peijun Wang ◽  
Jianwei Lu
2020 ◽  
pp. 1358-1382
Author(s):  
Rekh Ram Janghel

Alzheimer's is the most common form of dementia in India and it is one of the leading causes of death in the world. Currently it is diagnosed by calculating the MSME score and by manual study of MRI scan. In this chapter, the authors develop and compare different methods to diagnose and predict Alzheimer's disease by processing structural magnetic resonance image scans (MRI scans) with deep learning neural networks. The authors implement one model of deep-learning networks which are convolution neural network (CNN). They use four different architectures of CNN, namely Lenet-5, AlexNet, ZFNet, and R-CNN architecture. The best accuracies for 75-25 cross validation and 90-10 cross validation are 97.68% and 98.75%, respectively, and achieved by ZFNet architecture of convolution neural network. This research will help in further studies on improving the accuracy of Alzheimer's diagnosis and prediction using neural networks.


Author(s):  
Rekh Ram Janghel

Alzheimer's is the most common form of dementia in India and it is one of the leading causes of death in the world. Currently it is diagnosed by calculating the MSME score and by manual study of MRI scan. In this chapter, the authors develop and compare different methods to diagnose and predict Alzheimer's disease by processing structural magnetic resonance image scans (MRI scans) with deep learning neural networks. The authors implement one model of deep-learning networks which are convolution neural network (CNN). They use four different architectures of CNN, namely Lenet-5, AlexNet, ZFNet, and R-CNN architecture. The best accuracies for 75-25 cross validation and 90-10 cross validation are 97.68% and 98.75%, respectively, and achieved by ZFNet architecture of convolution neural network. This research will help in further studies on improving the accuracy of Alzheimer's diagnosis and prediction using neural networks.


Sign in / Sign up

Export Citation Format

Share Document