Antimicrobial Properties of a New Polymeric Material for Medical Purposes Under Conditions of Low-Intensity Current Without External Power Supplies

Author(s):  
Roman Chornopyshchuk ◽  
V. Nagaichuk ◽  
O. Nazarchuk ◽  
O. Kukolevska ◽  
I. Gerashchenko ◽  
...  
2021 ◽  
Vol 1038 ◽  
pp. 154-161
Author(s):  
Vasyl Nagaichuk ◽  
Roman Chornopyshchuk ◽  
Igor Gerashchenko ◽  
Olena Kukolevska ◽  
Anatolie Sidorenko

Active use of polymeric materials has become an integral part of all areas of modern medicine. Wound dressings capable of prolonged release of drugs directly into the lesion occupy a special place among them. The possibility of using such materials in the presence of low-intensity currents without external power supplies in a comprehensive treatment program for patients with burn injuries remains promising. The aim of the work is to study experimentally the antimicrobial efficacy of a new composite polymeric material based on poly(2-hydroxyethyl methacrylate), saturated with the antiseptic decamethoxine, under conditions of low-intensity current without external power supplies. The method of free radical thermal polymerization of a mixture of liquid monomer 2-hydroxyethyl methacrylate, crosslinking agent triethylene glycol dimethacrylate, polymerization initiator azobisisobutyronitrile was used for the synthesis of composite polymeric material. In addition, fourfold volume of distilled water as a pore-forming agent and decamethoxine as an antimicrobial component were administered. Known dressings of synthetic and biological origin were selected for comparison, some of which were pre-soaked in a 0.02% solution of decamethoxine. The study of conductivity of the materials without external power supplies was performed on the surface of a dense nutrient medium in a Petri dish using VITA-01M measuring device. Determination of antibacterial properties was performed by diffusion into agar. The obtained results allowed to establish the ability of the suggested polymeric material to conduct low-intensity currents without external power supplies, exceeding the duration of other traditional dressings. Comparison of antimicrobial activity of the studied samples confirmed the synergism of the action of physical factors and a new polymer-based composite material with the addition of antimicrobial substance to inhibit the growth of the test museum and clinical strains of Staphylococcus aureus. The ability of low-intensity currents without external power supplies to potentiate the antimicrobial properties of a new composite polymeric material based on poly(2-hydroxyethyl methacrylate), modified with a pore-forming agent, with the addition of decamethoxine was experimentally established.


The Analyst ◽  
2016 ◽  
Vol 141 (12) ◽  
pp. 3898-3903 ◽  
Author(s):  
Maowei Dou ◽  
Juan Lopez ◽  
Misael Rios ◽  
Oscar Garcia ◽  
Chuan Xiao ◽  
...  

A low-cost b̲a̲ttery-powered s̲pectrophotometric s̲ystem (BASS) was developed for high-sensitivity point-of-care analysis in low-resource settings on a microfluidic chip without relying on external power supplies.


2018 ◽  
Vol 33 (9) ◽  
pp. 7759-7769 ◽  
Author(s):  
Yunlong Shang ◽  
Bing Xia ◽  
Naxin Cui ◽  
Chenghui Zhang ◽  
Chunting Chris Mi

Aerospace ◽  
2004 ◽  
Author(s):  
Henry A. Sodano ◽  
Jae-Sung Bae ◽  
Daniel J. Inman ◽  
W. Keith Belvin

The movement of a conductor through a stationary magnetic field or a time varying magnetic field through a stationary conductor generates electromagnetic forces that can be used to suppress the vibrations of a flexible structure. In the present study, a new electromagnetic damping mechanism is introduced. This mechanism differs from previously developed electromagnetic braking systems and eddy current dampers because the system investigated in the following manuscript uses the radial magnetic flux of a permanent magnet to generate the electromagnetic damping force rather than the flux perpendicular to the magnet’s face as done in other studies. One important advantage of the proposed mechanism is that it is simple and easy to be applied. Additionally, a single magnet can be used to damp the transverse vibrations that are present in many structures. Furthermore, it doesn’t require any electronic devices or external power supplies, therefore functioning as a non-contacting passive damper. A theoretical model of the system is derived using electromagnetic theory, enabling us to estimate the electromagnetic damping force induced on the structure. The proposed eddy current damper was constructed and experiments were performed to verify the precision of the theoretical model. It is found that the proposed eddy current damping mechanism increases the damping ratio by up to 150 times and provides sufficient damping force to quickly suppress the beam’s vibration.


Sign in / Sign up

Export Citation Format

Share Document