scholarly journals Success at High Peaks: A Multiscale Approach Combining Individual and Expedition-Wide Factors

Author(s):  
Sanjukta Krishnagopal
Keyword(s):  
2014 ◽  
Vol 506 ◽  
pp. 175-192 ◽  
Author(s):  
N Sturaro ◽  
G Lepoint ◽  
A Pérez-Perera ◽  
S Vermeulen ◽  
P Panzalis ◽  
...  

2020 ◽  
Vol 995 ◽  
pp. 209-213
Author(s):  
Young W. Kwon

Failure analyses of laminated fibrous composite structures were conducted using the failure criteria based on a multiscale approach. The failure criteria used the stresses and strains in the fiber and matrix materials, respectively, rather than those smeared values at the lamina level. The failure modes and their respective failure criteria consist of fiber failure, matrix failure and their interface failure explicitly. In order to determine the stresses and strains at the constituent material level (i.e. fiber and matrix materials), analytical expressions were derived using a unit-cell model. This model was used for the multiscale approach for both upscaling and downscaling processes. The failure criteria are applicable to both quasi-static loading as well as dynamic loading with strain rate effects.


Author(s):  
Kasra Momeni

A multiscale approach is pursued for modeling the size-scale effect on generated electric potential by nanocomposite electrical generators of ZnO nanowires. A core-surface model is used for capturing the effect of size-scale on elastic modulus of ZnO NWs. In this model, a surface with different elastic modulus as of the core of NW was considered. Using linear elasticity and axisymmetric configuration of this problem, closed form governing equations are derived in cylindrical coordinate system. Parametric studied are performed for sample cases to demonstrate application of the developed model. It is shown that ZnO nanowires with larger aspect ratio and smaller diameters have higher performance and can produce higher electric potential.


Sign in / Sign up

Export Citation Format

Share Document