Falling Sphere Observations of Anisotropic Gravity Wave Motions in the Upper Stratosphere over Australia

1989 ◽  
pp. 509-532 ◽  
Author(s):  
Stephen D. Eckermann ◽  
Robert A. Vincent
Keyword(s):  
2006 ◽  
Vol 24 (4) ◽  
pp. 1209-1226 ◽  
Author(s):  
L. Wang ◽  
D. C. Fritts ◽  
B. P. Williams ◽  
R. A. Goldberg ◽  
F. J. Schmidlin ◽  
...  

Abstract. Falling sphere and balloon wind and temperature data from the MaCWAVE winter campaign, which was conducted in northern Scandinavia during January 2003, are analyzed to investigate gravity wave characteristics in the stratosphere and mesosphere. There were two stratospheric warming events occurring during the campaign, one having a maximum temperature perturbation at ~45 km during 17–19 January, and the other having a maximum perturbation at ~30 km during 24–27 January. The former was a major event, whereas the latter was a minor one. Both warmings were accompanied by upper mesospheric coolings, and during the second warming, the upper mesospheric cooling propagated downward. Falling sphere data from the two salvos on 24–25 January and 28 January were analyzed for gravity wave characteristics. Gravity wave perturbations maximized at ~45–50 km, with a secondary maximum at ~60 km during Salvo 1; for Salvo 2, wave activity was most pronounced at ~60 km and above. Gravity wave horizontal propagation directions are estimated using the conventional hodographic analysis combined with the S-transform (a Gaussian wavelet analysis method). The results are compared with those from a Stokes analysis. They agree in general, though the former appears to provide better estimates for some cases, likely due to the capability of the S-transform to obtain robust estimates of wave amplitudes and phase differences between different fields. For Salvo 1 at ~60 km and above, gravity waves propagated towards the southeast, whereas for Salvo 2 at similar altitudes, waves propagated predominantly towards the northwest or west. These waves were found not to be topographic waves. Gravity wave motions at ~45–50 km in Salvo 1 were more complicated, but they generally had large amplitudes, short vertical scales, and their hodographs revealed a northwest-southeast orientation. In addition, the ratios between wave amplitudes and intrinsic phase speeds generally displayed a marked peak at ~45–50 km and decreased sharply at ~50 km, where the background winds were very weak. These results suggest that these wave motions were most likely topographic waves approaching their critical levels. Waves were more nearly isotropic in the lower stratosphere.


2006 ◽  
Vol 24 (4) ◽  
pp. 1267-1278 ◽  
Author(s):  
C. L. Croskey ◽  
J. D. Mitchell ◽  
M. Friedrich ◽  
F. J. Schmidlin ◽  
R. A. Goldberg

Abstract. Langmuir probe electron and ion measurements from four instrumented rockets flown during the MaCWAVE (Mountain and Convective Waves Ascending VErtically) program are reported. Two of the rockets were launched from Andøya Rocket Range, Norway, in the summer of 2002. Electron scavenging by ice particulates produced reductions of the electron density in both sharp narrow (≈1–2 km) layers and as a broad (≈13 km) depletion. Small-scale irregularities were observed in the altitude regions of both types of electron depletion. The scale of the irregularities extended to wavelengths comparable to those used by ground-based radars in observing PMSE. In regions where ice particles were not present, analysis of the spectral signatures provided reasonable estimates of the energy deposition from breaking gravity waves. Two more instrumented rockets were flown from Esrange, Sweden, in January 2003. Little turbulence or energy deposition was observed during one flight, but relatively large values were observed during the other flight. The altitude distribution of the observed turbulence was consistent with observations of a semidiurnal tide and gravity wave instability effects as determined by ground-based lidar and radar measurements and by falling sphere measurements of the winds and temperatures (Goldberg et al., 2006; Williams et al., 2006).


1989 ◽  
Vol 130 (2-3) ◽  
pp. 509-532 ◽  
Author(s):  
Stephen D. Eckermann ◽  
Robert A. Vincent
Keyword(s):  

2012 ◽  
Vol 18 (4(77)) ◽  
pp. 30-36 ◽  
Author(s):  
Y.I. Kryuchkov ◽  
◽  
O.K. Cheremnykh ◽  
A.K. Fedorenko ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document