Stress Transfer and Nonlinear Stress Accumulation at Subduction-type Plate Boundaries — Application to the Aleutians

1985 ◽  
pp. 812-830
Author(s):  
Victor C. Li ◽  
Carl Kisslinger
1992 ◽  
Vol 19 (19) ◽  
pp. 1967-1970 ◽  
Author(s):  
David Verdonck ◽  
Kevin P. Furlong

2000 ◽  
Vol 157 (11) ◽  
pp. 2125-2147 ◽  
Author(s):  
C. Hashimoto ◽  
M. Matsu’ura

2012 ◽  
Vol 109 (38) ◽  
pp. 15157-15161 ◽  
Author(s):  
Hitoshi Hirose ◽  
Hisanori Kimura ◽  
Bogdan Enescu ◽  
Shin Aoi

Slow slip events (SSEs) are another mode of fault deformation than the fast faulting of regular earthquakes. Such transient episodes have been observed at plate boundaries in a number of subduction zones around the globe. The SSEs near the Boso Peninsula, central Japan, are among the most documented SSEs, with the longest repeating history, of almost 30 y, and have a recurrence interval of 5 to 7 y. A remarkable characteristic of the slow slip episodes is the accompanying earthquake swarm activity. Our stable, long-term seismic observations enable us to detect SSEs using the recorded earthquake catalog, by considering an earthquake swarm as a proxy for a slow slip episode. Six recurrent episodes are identified in this way since 1982. The average duration of the SSE interoccurrence interval is 68 mo; however, there are significant fluctuations from this mean. While a regular cycle can be explained using a simple physical model, the mechanisms that are responsible for the observed fluctuations are poorly known. Here we show that the latest SSE in the Boso Peninsula was likely hastened by the stress transfer from the March 11, 2011 great Tohoku earthquake. Moreover, a similar mechanism accounts for the delay of an SSE in 1990 by a nearby earthquake. The low stress buildups and drops during the SSE cycle can explain the strong sensitivity of these SSEs to stress transfer from external sources.


2012 ◽  
Vol 40 (2) ◽  
pp. 83-107 ◽  
Author(s):  
Zhao Li ◽  
Ziran R. Li ◽  
Yuanming M. Xia

ABSTRACT A detailed tire-rolling model (185/75R14), using the implicit to explicit FEA solving strategy, was constructed to provide a reliable, dynamic simulation with several modeling features, including mesh, material modeling, and a solving strategy that could contribute to the consideration of the serious numerical noises. High-quality hexahedral meshes of tread blocks were obtained with a combined mapping method. The actual rubber distributing and nonlinear, stress-strain relationship of the rubber and bilinear elastic reinforcement were modeled for realism. In addition, a tread-rubber friction model obtained from the Laboratory Abrasion and Skid Tester (LAT 100) was applied to simulate the interaction of the tire with the road. The force and moment (F&) behaviors of tire cornering when subjected to a slip-angle sweep of −10 to 10° were studied with that model. To demonstrate the efficiency of the proposed simulation, the computed F&M were compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering F&M agreed well with the experimental results, so the footprint shape and contact pressure distribution of several cornering conditions were investigated. Furthermore, the longitudinal forces in response to braking/driving torque application in a slip-ratio range of −100% to 100% were computed. The proposed FEA solution confines the numerical noise within a smaller range and can serve as a valid tool in tire design.


1993 ◽  
Vol 2 (5) ◽  
pp. 096369359300200 ◽  
Author(s):  
H.D. Wagner ◽  
S. Ling

An energy balance approach is proposed for the single fibre composite (or fragmentation) test, by which the degree of fibre-matrix bonding is quantified by means of the interfacial energy, rather than the interfacial shear strength, as a function of the fibre geometrical and mechanical characteristics, the stress transfer length, and the debonding length. The validity of the approach is discussed using E-glass fibres embedded in epoxy, both in the dry state and in the presence of hot distilled water.


Sign in / Sign up

Export Citation Format

Share Document