fibre matrix
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 59)

H-INDEX

40
(FIVE YEARS 4)

2022 ◽  
pp. 002199832110619
Author(s):  
Sebastian Rosini ◽  
Mark N Mavrogordato ◽  
Tsuneo Takano ◽  
Naoki Sugiura ◽  
S Mark Spearing ◽  
...  

In situ synchrotron radiation computed tomography (SRCT) was used to compare the fibre damage progression in five configurations of (902/02)s carbon-epoxy coupons loaded to failure. The effects of different sizing types, surface treatments and fibre diameters on the macroscopic properties, for example, ultimate tensile strength (UTS), and on the damage accumulation at a microscopic scale, for example, fibre break accumulation, were assessed. A semi-automated approach was adopted to process the large amount of data obtained from the SRCT scans and further method applicability areas can be envisaged. Single fibre break accumulation was seen to be influenced by the fibre type, while the formation of interacting fibre break groups by the surface treatment and the sizing type. For the materials presented, it can be suggested that an increased defect tolerance can be obtained by moving from stronger to weaker fibre-matrix adhesion, with sub-critical multiplet behaviour emerging as independent of the average UTS value.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hanna M. Brodowsky ◽  
Anne Hennig

Abstract Natural fibre–reinforced composites are more sustainable than other composites with respect to the raw materials. Their properties are attractive due to high specific properties, and especially so wherever high damping is valued. As the interphase between fibre and matrix is the region of highest stresses, a strong bond between fibre and matrix is essential for any composites’ properties. The present study compares two methods of determining the interfacial shear stress in natural fibre–reinforced composites: the single fibre fragmentation test and the single fibre pullout test. The studied composites are flax fibre reinforced epoxy. For a variety of fibre–matrix interaction, the fibres are treated with a laccase enzyme and dopamine, which is known to improve the fibre–matrix shear strength. In the observed samples, single fibre fragmentation test data, i.e. of fracture mode and fragment length, scatter when compared to pullout data. In single fibre pullout tests, the local interfacial shear strength showed a 30% increase in the laccase-treated samples, compared to the control samples. The method also permitted an evaluation of the frictional stress occurring after surface failure.


Fibers ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Wiwat Pornwannachai ◽  
A. Richard Horrocks ◽  
Baljinder K. Kandola

Challenges faced by natural fibre-reinforced composites include poor compatibility between hydrophilic fibres such as flax and hydrophobic polymeric matrices such as polypropylene (PP) or poly(lactic acid) (PLA), and their inherent flammability. The former promotes weak interfacial adhesion between fibre and matrix, which may be further compromised by the addition of a flame retardant. This paper investigates the effect that the added flame retardant (FR), guanylurea methylphosphonate (GUP) and selected surface treatments of commingled flax and either PP or PLA fabrics have on the fibre/matrix interfacial cohesive forces in derived composites. Surface treatments included silanisation and atmospheric plasma flame exposure undertaken both individually and in sequence. 1-, 2- and 8-layered composite laminates were examined for their tensile, peeling and flexural properties, respectively, all of which yield measures of fibre-matrix cohesion. For FR-treated Flax/PP composites, maximum improvement was obtained with the combination of silane (using vinyltriethoxysilane) and plasma (150 W) treatments, with the highest peeling strength and flexural properties. However, for FR-treated Flax/PLA composites, maximum improvement in both properties occurred following 150 W plasma exposure only. The improvements in physical properties were matched by increased fibre-matrix adhesion as shown in SEM images of fractured laminates in which fibre-pullout had been eliminated.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4211
Author(s):  
Samsul Rizal ◽  
Abdul Khalil H.P.S. ◽  
E. M. Mistar ◽  
Niyi Gideon Olaiya ◽  
Umar Muksin ◽  
...  

The miscibility between hydrophilic biofibre and hydrophobic matrix has been a challenge in developing polymer biocomposite. This study investigated the anhydride modification effect of propionic and succinic anhydrides on Kenaf fibre’s functional properties in vinyl ester bionanocomposites. Bionanocarbon from oil palm shell agricultural wastes enhanced nanofiller properties in the fibre-matrix interface via the resin transfer moulding technique. The succinylated fibre with the addition of the nanofiller in vinyl ester provided great improvement of the tensile, flexural, and impact strengths of 92.47 ± 1.19 MPa, 108.34 ± 1.40 MPa, and 8.94 ± 0.12 kJ m−2, respectively than the propionylated fibre. The physical, morphological, chemical structural, and thermal properties of bionanocomposites containing 3% bionanocarbon loading showed better enhancement properties. This enhancement was associated with the effect of the anhydride modification and the nanofiller’s homogeneity in bionanocarbon-Kenaf fibre-vinyl ester bonding. It appears that Kenaf fibre modified with propionic and succinic anhydrides incorporated with bionanocarbon can be successfully utilised as reinforcing materials in vinyl ester matrix.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mingzhang Lan ◽  
Jian Zhou ◽  
Mingfeng Xu

Engineered cementitious composite (ECC) is a group of ultra-ductile fibre-reinforced cementitious composites, characterised by high ductility and moderate content of short discontinuous fibre. The unique tensile strain-hardening behaviour of ECC results from a deliberate design based on the understanding of micromechanics between fibre, matrix, and fibre–matrix interface. To investigate the effect of fibre properties on the tensile behaviour of ECCs is, therefore, the key to understanding the composite mechanical behaviour of ECCs. This paper presents a study on the fibre-bridging behaviour and composite mechanical properties of ECCs with three types of fibres, including oil-coated polyvinyl alcohol (PVA) fibre, untreated PVA fibre, and polypropylene (PP) fibre. The experimental result reveals that various fibres with different properties result in difference in the fibre-bridging behaviour and composite mechanical properties of ECCs. The difference in the composite mechanical properties of ECCs with different fibres was interpreted by analysing the fibre-bridging behaviour.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pawan Dulal ◽  
Robabeh Gharaei ◽  
Adam J. Berg ◽  
Adam A. Walters ◽  
Nicholas Hawkins ◽  
...  

AbstractAdenovirus vectors offer a platform technology for vaccine development. The value of the platform has been proven during the COVID-19 pandemic. Although good stability at 2–8 °C is an advantage of the platform, non-cold-chain distribution would have substantial advantages, in particular in low-income countries. We have previously reported a novel, potentially less expensive thermostabilisation approach using a combination of simple sugars and glass micro-fibrous matrix, achieving excellent recovery of adenovirus-vectored vaccines after storage at temperatures as high as 45 °C. This matrix is, however, prone to fragmentation and so not suitable for clinical translation. Here, we report an investigation of alternative fibrous matrices which might be suitable for clinical use. A number of commercially-available matrices permitted good protein recovery, quality of sugar glass and moisture content of the dried product but did not achieve the thermostabilisation performance of the original glass fibre matrix. We therefore further investigated physical and chemical characteristics of the glass fibre matrix and its components, finding that the polyvinyl alcohol present in the glass fibre matrix assists vaccine stability. This finding enabled us to identify a potentially biocompatible matrix with encouraging performance. We discuss remaining challenges for transfer of the technology into clinical use, including reliability of process performance.


2021 ◽  
Author(s):  
MATTEO LILLI ◽  
MILAN ZVONEK ◽  
VLADIMIR CECH ◽  
CHRISTINA SCHEFFLER ◽  
JACOPO TIRILLÒ ◽  
...  

Basalt fibres are becoming a promising alternative to synthetic fibres as a green reinforcement phase in polymeric matrix composites, showing excellent mechanical, chemical and thermal properties. In this work we synthetized tetravinylsilane (TVS) or a mixture formed by tetravinylsilane and different percentages of oxygen on the surface of unsized basalt fibres through the Plasma-Enhanced Chemical Vapor Deposition (PECVD) technique for improving the fibre/matrix adhesion. Single fibre tensile test proved the effectiveness of the process, without any degradation of the mechanical properties of modified basalt fibres. Finally, through pull out tests, the interfacial properties of basalt fibres were studied, measuring increases up to 80% of the IFSS for modified fibres compared to neat fibres. This result is the consequence of a greater chemical compatibility between the fibres and the matrix, thanks to the presence of a higher number of Si-O-C groups, and of a mechanical interlocking effect promoted by the increased surface roughness of the plasma-modified fibres.


Sign in / Sign up

Export Citation Format

Share Document