1996 ◽  
Vol 180 (2) ◽  
pp. 402-411 ◽  
Author(s):  
Roy O. Davies ◽  
Michael P. Drazin ◽  
Mark L. Roberts

1983 ◽  
Vol 94 (2) ◽  
pp. 341-350
Author(s):  
R. Hill

AbstractIn the classical theory of plane deformations in isotropic plastic media, the field equations are hyperbolic and the orthogonal families of characteristics are known as Hencky-Prandtl nets. Their distinctive geometry has been given symbolic expression by Collins (1968), in an algebra of infinite matrices associated with canonical series representations of the general solution. This has become the standard technique when investigating boundary-value problems, both analytically and numerically. The basic framework of the algebra is here reorganized and developed. A systematic approach then leads to new identities which are shown to be fundamental in the algebraic hierarchy.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Muhammed Altun

The fine spectra of upper and lower triangular banded matrices were examined by several authors. Here we determine the fine spectra of tridiagonal symmetric infinite matrices and also give the explicit form of the resolvent operator for the sequence spaces , , , and .


2017 ◽  
Vol 5 (1) ◽  
pp. 250-257 ◽  
Author(s):  
María Ivonne Arenas-Herrera ◽  
Luis Verde-Star

Abstract We present a new way to deal with doubly infinite lower Hessenberg matrices based on the representation of the matrices as the sum of their diagonal submatrices. We show that such representation is a simple and useful tool for computation purposes and also to obtain general properties of the matrices related with inversion, similarity, commutativity, and Pincherle derivatives. The diagonal representation allows us to consider the ring of doubly infinite lower Hessenberg matrices over a ring R as a ring of Laurent series in one indeterminate, with coefficients in the ring of R-valued sequences that don’t commute with the indeterminate.


2020 ◽  
pp. 71-88
Author(s):  
Mohammad Mursaleen ◽  
Feyzi Başar
Keyword(s):  

2021 ◽  
Vol 25 (21) ◽  
pp. 606-643
Author(s):  
Yury Neretin

We classify irreducible unitary representations of the group of all infinite matrices over a p p -adic field ( p ≠ 2 p\ne 2 ) with integer elements equipped with a natural topology. Any irreducible representation passes through a group G L GL of infinite matrices over a residue ring modulo p k p^k . Irreducible representations of the latter group are induced from finite-dimensional representations of certain open subgroups.


10.37236/1703 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Michael Schlosser

We present a new matrix inverse with applications in the theory of bilateral basic hypergeometric series. Our matrix inversion result is directly extracted from an instance of Bailey's very-well-poised ${}_6\psi_6$ summation theorem, and involves two infinite matrices which are not lower-triangular. We combine our bilateral matrix inverse with known basic hypergeometric summation theorems to derive, via inverse relations, several new identities for bilateral basic hypergeometric series.


Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6219-6231
Author(s):  
D. Foroutannia ◽  
H. Roopaei

Let A = (an,k) and B = (bn,k) be two infinite matrices with real entries. The main purpose of this paper is to generalize the multiplier space for introducing the concepts of ?AB-, ?AB-, ?AB-duals and NAB-duals. Moreover, these duals are investigated for the sequence spaces X and X(A), where X ? {c0, c, lp} for 1 ? p ? ?. The other purpose of the present study is to introduce the sequence spaces X(A,?) = {x=(xk): (?x?k=1 an,kXk - ?x?k=1 an-1,kXk)? n=1 ? X}, where X ? {l1,c,c0}, and computing the NAB-(or Null) duals and ?AB-duals for these spaces.


2019 ◽  
Vol 22 (2) ◽  
pp. 191-200
Author(s):  
Enno Kolk

Characterized are matrix transformations related to certain subsets of the space of ideal convergent sequences. Obtained here results are connected with the previous investigations of the author on some transformations defined by infinite matrices of bounded linear operators.


Sign in / Sign up

Export Citation Format

Share Document