scholarly journals Description of unitary representations of the group of infinite 𝑝-adic integer matrices

2021 ◽  
Vol 25 (21) ◽  
pp. 606-643
Author(s):  
Yury Neretin

We classify irreducible unitary representations of the group of all infinite matrices over a p p -adic field ( p ≠ 2 p\ne 2 ) with integer elements equipped with a natural topology. Any irreducible representation passes through a group G L GL of infinite matrices over a residue ring modulo p k p^k . Irreducible representations of the latter group are induced from finite-dimensional representations of certain open subgroups.

1968 ◽  
Vol 11 (3) ◽  
pp. 399-403 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite dimensional, simple Lie algebra over an algebraically closed field F of characteristic zero. It is well known that every weight space of an irreducible representation (ρ, V) admitting a highest weight function is finite dimensional. In a previous paper [2], we have established the existence of a wide class of irreducible representations which admit a one-dimensional weight space but no highest weight function. In this paper we show that the weight spaces of all such representations are finite dimensional.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 414 ◽  
Author(s):  
Alberto Ibort ◽  
Miguel Rodríguez

In this paper, both the structure and the theory of representations of finite groupoids are discussed. A finite connected groupoid turns out to be an extension of the groupoids of pairs of its set of units by its canonical totally disconnected isotropy subgroupoid. An extension of Maschke’s theorem for groups is proved showing that the algebra of a finite groupoid is semisimple and all finite-dimensional linear representations of finite groupoids are completely reducible. The theory of characters for finite-dimensional representations of finite groupoids is developed and it is shown that irreducible representations of the groupoid are in one-to-one correspondence with irreducible representation of its isotropy groups, with an extension of Burnside’s theorem describing the decomposition of the regular representation of a finite groupoid. Some simple examples illustrating these results are exhibited with emphasis on the groupoids interpretation of Schwinger’s description of quantum mechanical systems.


1978 ◽  
Vol 21 (1) ◽  
pp. 17-19
Author(s):  
Dragomir Ž. Djoković

Let G be a group and ρ and σ two irreducible unitary representations of G in complex Hilbert spaces and assume that dimp ρ= n < ∞. D. Poguntke [2] proved that is a sum of at most n2 irreducible subrepresentations. The case when dim a is also finite he attributed to R. Howe.We shall prove analogous results for arbitrary finite-dimensional representations, not necessarily unitary. Thus let F be an algebraically closed field of characteristic 0. We shall use the language of modules and we postulate that allour modules are finite-dimensional as F-vector spaces. The field F itself will be considered as a trivial G-module.


1949 ◽  
Vol 1 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Irving Kaplansky

Let G be a compact group. According to the celebrated theorem of Peter-Weyl there exists a complete set of finite-dimensional irreducible unitary representations of G, the completeness meaning that for any group element other than the identity there is a representation sending it into a matrix other than the unit matrix. If G is commutative, the representations are necessarily one-dimensional. It is an immediate consequence of the Peter-Weyl theorem that the converse also holds: if every representation is one-dimensional, G is commutative. The main theorem in the present paper is a generalization of this result to the case where the representations have bounded degree.


Author(s):  
A. A. Astaneh

AbstractIn this paper one more canonical method to construct the irreducible unitary representations of a connected, simply connected nilpotent Lie group is introduced. Although we used Kirillov' analysis to deduce this procedure, the method obtained differs from that of Kirillov's, in that one does not need to consider the codjoint representation of the group in the dual of its Lie algebra (in fact, neither does one need to consider the Lie algebra of the group, provided one knows certain connected subgroups and their characters). The method also differs from that of Mackey's as one only needs to induce characters to obtain all irreducible representations of the group.


1977 ◽  
Vol 81 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Daniel Segal

1. Introduction. It is well known that every finite-dimensional irreducible representation of a nilpotent group over an algebraically closed field is monomial, that is induced from a 1-dimensional representation of some subgroup. However, even a finitely generated nilpotent group in general has infinite-dimensional irreducible representations, and as a first step towards an understanding of these one wants to discover whether they too are necessarily monomial. The main point of this note is to show how far they can fail to be so.


1971 ◽  
Vol 14 (1) ◽  
pp. 113-115 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite-dimensional simple Lie algebra over an algebraically closed field K of characteristic zero. It is well known that every finite-dimension 1, irreducible representation of L admits a weight space decomposition; moreover every irreducible representation of L having at least one weight space admits a weight space decomposition.


2021 ◽  
Vol 25 (31) ◽  
pp. 897-902
Author(s):  
Dmitrii Pasechnik

We show that any irreducible representation ρ \rho of a finite group G G of exponent n n , realisable over R \mathbb {R} , is realisable over the field E ≔ Q ( ζ n ) ∩ R E≔\mathbb {Q}(\zeta _n)\cap \mathbb {R} of real cyclotomic numbers of order n n , and describe an algorithmic procedure transforming a realisation of ρ \rho over Q ( ζ n ) \mathbb {Q}(\zeta _n) to one over E E .


Author(s):  
Evgenii Dmitrievich Romanov

A family of quasi-invariant measures on the special functional space of curves in a finite-dimensional Euclidean space with respect to the action of diffeomorphisms is constructed. The main result is an explicit expression for the Radon–Nikodym derivative of the transformed measure relative to the original one. The stochastic Ito integral allows to express the result in an invariant form for a wider class of diffeomorphisms. These measures can be used to obtain irreducible unitary representations of the diffeomorphisms group which will be studied in future research. A geometric interpretation of the action considered together with a generalization to the multidimensional case makes such representations applicable to problems of quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document