scholarly journals Representation of doubly infinite matrices as non-commutative Laurent series

2017 ◽  
Vol 5 (1) ◽  
pp. 250-257 ◽  
Author(s):  
María Ivonne Arenas-Herrera ◽  
Luis Verde-Star

Abstract We present a new way to deal with doubly infinite lower Hessenberg matrices based on the representation of the matrices as the sum of their diagonal submatrices. We show that such representation is a simple and useful tool for computation purposes and also to obtain general properties of the matrices related with inversion, similarity, commutativity, and Pincherle derivatives. The diagonal representation allows us to consider the ring of doubly infinite lower Hessenberg matrices over a ring R as a ring of Laurent series in one indeterminate, with coefficients in the ring of R-valued sequences that don’t commute with the indeterminate.

2014 ◽  
Vol 51 (4) ◽  
pp. 454-465
Author(s):  
Lu-Ming Shen ◽  
Huiping Jing

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q ((X^{ - 1} ))$$ \end{document} denote the formal field of all formal Laurent series x = Σ n=ν∞anX−n in an indeterminate X, with coefficients an lying in a given finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. For any \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} with deg β > 1, it is known that for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$x \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} (with respect to the Haar measure), x is β-normal. In this paper, we show the inverse direction, i.e., for any x, for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document}, x is β-normal.


2020 ◽  
Vol 25 (2) ◽  
pp. 125-132
Author(s):  
Bal Bahadur Tamang ◽  
Ajay Singh

This article attempts to describe the continued fraction expansion of ÖD viewed as a Laurent series x-1. As the behavior of the continued fraction expansion of ÖD is related to the solvability of the polynomial Pell’s equation p2-Dq2=1  where D=f2+2g  is monic quadratic polynomial with deg g<deg f  and the solutions p, q  must be integer polynomials. It gives a non-trivial solution if and only if the continued fraction expansion of ÖD  is periodic.


1990 ◽  
Vol 88 (2) ◽  
pp. 233-250 ◽  
Author(s):  
Detlev Buchholz ◽  
Claudio D'Antoni ◽  
Roberto Longo

2020 ◽  
pp. 1-11
Author(s):  
Yesong Xu ◽  
Shuo Chen ◽  
Jun Li ◽  
Zongyan Han ◽  
Jian Yang

Sign in / Sign up

Export Citation Format

Share Document