Estimations Involving a Modulus of Continuity for a Generalization of Korovkin’s Operators

Author(s):  
P. C. Sikkema
Author(s):  
Ugo Gianazza ◽  
Naian Liao

Abstract We prove an estimate on the modulus of continuity at a boundary point of a cylindrical domain for local weak solutions to singular parabolic equations of $p$-Laplacian type, with $p$ in the sub-critical range $\big(1,\frac{2N}{N+1}\big]$. The estimate is given in terms of a Wiener-type integral, defined by a proper elliptic $p$-capacity.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Heping Wang ◽  
Yanbo Zhang

We discuss the rate of convergence of the Lupasq-analogues of the Bernstein operatorsRn,q(f;x)which were given by Lupas in 1987. We obtain the estimates for the rate of convergence ofRn,q(f)by the modulus of continuity off, and show that the estimates are sharp in the sense of order for Lipschitz continuous functions.


2021 ◽  
pp. 105659
Author(s):  
J. Bustamante ◽  
J.J. Merino-García ◽  
J.M. Quesada

2018 ◽  
Vol 34 (3) ◽  
pp. 363-370
Author(s):  
M. MURSALEEN ◽  
◽  
MOHD. AHASAN ◽  

In this paper, a Dunkl type generalization of Stancu type q-Szasz-Mirakjan-Kantorovich positive linear operators ´ of the exponential function is introduced. With the help of well-known Korovkin’s theorem, some approximation properties and also the rate of convergence for these operators in terms of the classical and second-order modulus of continuity, Peetre’s K-functional and Lipschitz functions are investigated.


2021 ◽  
Vol 1 ◽  
pp. 76-83
Author(s):  
Yuri I. Kharkevich ◽  
◽  
Alexander G. Khanin ◽  

The paper deals with topical issues of the modern applied mathematics, in particular, an investigation of approximative properties of Abel–Poisson-type operators on the so-called generalized Hölder’s function classes. It is known, that by the generalized Hölder’s function classes we mean the classes of continuous -periodic functions determined by a first-order modulus of continuity. The notion of the modulus of continuity, in turn, was formulated in the papers of famous French mathematician Lebesgue in the beginning of the last century, and since then it belongs to the most important characteristics of smoothness for continuous functions, which can describe all natural processes in mathematical modeling. At the same time, the Abel-Poisson-type operators themselves are the solutions of elliptic-type partial differential equations. That is why the results obtained in this paper are significant for subsequent research in the field of applied mathematics. The theorem proved in this paper characterizes the upper bound of deviation of continuous -periodic functions determined by a first-order modulus of continuity from their Abel–Poisson-type operators. Hence, the classical Kolmogorov–Nikol’skii problem in A.I. Stepanets sense is solved on the approximation of functions from the classes by their Abel–Poisson-type operators. We know, that the Abel–Poisson-type operators, in partial cases, turn to the well-known in applied mathematics Poisson and Jacobi–Weierstrass operators. Therefore, from the obtained theorem follow the asymptotic equalities for the upper bounds of deviation of functions from the Hölder’s classes of order from their Poisson and Jacobi–Weierstrass operators, respectively. The obtained equalities generalize the known in this direction results from the field of applied mathematics.


2017 ◽  
Vol 50 (1) ◽  
pp. 130-143 ◽  
Author(s):  
Pooja Gupta ◽  
Purshottam Narain Agrawal

Abstract The purpose of this paper is to establish the rate of convergence in terms of the weighted modulus of continuity and Lipschitz type maximal function for the q-Szász-beta operators. We also study the rate of A-statistical convergence. Lastly, we modify these operators using King type approach to obtain better approximation.


Sign in / Sign up

Export Citation Format

Share Document