Periodic Steady State Computation with the Poincaré-map Method

Author(s):  
S. H. M. J. Houben
Author(s):  
Isaac Esparza ◽  
Jeffrey Falzarano

Abstract In this work, global analysis of ship rolling motion as effected by parametric excitation is studied. The parametric excitation results from the roll restoring moment variation as a wave train passes. In addition to the parametric excitation, an external periodic wave excitation and steady wind bias are also included in the analysis. The roll motion is the most critical motion for a ship because of the possibility of capsizing. The boundaries in the Poincaré map which separate initial conditions which eventually evolve to bounded steady state solutions and those which lead to unbounded capsizing motion are studied. The changes in these boundaries or manifolds as effected by changes in the ship and environmental conditions are analyzed. The region in the Poincaré map which lead to bounded steady state motions is called the safe basin. The size of this safe basin is a measure of the vessel’s resistance to capsizing.


1992 ◽  
Vol 02 (01) ◽  
pp. 1-9 ◽  
Author(s):  
YOHANNES KETEMA

This paper is concerned with analyzing Melnikov’s method in terms of the flow generated by a vector field in contrast to the approach based on the Poincare map and giving a physical interpretation of the method. It is shown that the direct implication of a transverse crossing between the stable and unstable manifolds to a saddle point of the Poincare map is the existence of two distinct preserved homoclinic orbits of the continuous time system. The stability of these orbits and their role in the phenomenon of sensitive dependence on initial conditions is discussed and a physical example is given.


2007 ◽  
Vol 17 (03) ◽  
pp. 837-850 ◽  
Author(s):  
SHIGEKI TSUJI ◽  
TETSUSHI UETA ◽  
HIROSHI KAWAKAMI

The Bonhöffer–van der Pol (BVP) oscillator is a simple circuit implementation describing neuronal dynamics. Lately the diffusive coupling structure of neurons attracts much attention since the existence of the gap-junctional coupling has been confirmed in the brain. Such coupling is easily realized by linear resistors for the circuit implementation, however, there are not enough investigations about diffusively coupled BVP oscillators, even a couple of BVP oscillators. We have considered several types of coupling structure between two BVP oscillators, and discussed their dynamical behavior in preceding works. In this paper, we treat a simple structure called current coupling and study their dynamical properties by the bifurcation theory. We investigate various bifurcation phenomena by computing some bifurcation diagrams in two cases, symmetrically and asymmetrically coupled systems. In symmetrically coupled systems, although all internal elements of two oscillators are the same, we obtain in-phase, anti-phase solution and some chaotic attractors. Moreover, we show that two quasi-periodic solutions disappear simultaneously by the homoclinic bifurcation on the Poincaré map, and that a large quasi-periodic solution is generated by the coalescence of these quasi-periodic solutions, but it disappears by the heteroclinic bifurcation on the Poincaré map. In the other case, we confirm the existence a conspicuous chaotic attractor in the laboratory experiments.


Sign in / Sign up

Export Citation Format

Share Document