Auto-oscillatory Processes and Feedback Mechanisms in Physarum Plasmodium Motility

Author(s):  
Vladimir A. Teplov ◽  
Yuri M. Romanovsky ◽  
Dmitri A. Pavlov ◽  
Wolfgang Alt
Author(s):  
A.E. Chistyakov ◽  
◽  
E. A. Protsenko ◽  
E.F. Timofeeva ◽  
◽  
...  

Author(s):  
Berit Brogaard

Despite the recent surge in research on, and interest in, synesthesia, the mechanism underlying this condition is still unknown. Feedforward mechanisms involving overlapping receptive fields of sensory neurons as well as feedback mechanisms involving a lack of signal disinhibition have been proposed. Here I show that a broad range of studies of developmental synesthesia indicate that the mechanism underlying the phenomenon may in some cases involve the reinstatement of brain activity in sensory or cognitive streams in a way that is similar to what happens during memory retrieval of semantically associated items. In the chapter’s final sections I look at the relevance of synesthesia research, given the memory model, to our understanding of multisensory perception and common mapping patterns.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1376
Author(s):  
Marina Caputo ◽  
Stella Pigni ◽  
Emanuela Agosti ◽  
Tommaso Daffara ◽  
Alice Ferrero ◽  
...  

Growth hormone (GH) and insulin-like growth factor-1 (IGF-I) are pleiotropic hormones with important roles in lifespan. They promote growth, anabolic actions, and body maintenance, and in conditions of energy deprivation, favor catabolic feedback mechanisms switching from carbohydrate oxidation to lipolysis, with the aim to preserve protein storages and survival. IGF-I/insulin signaling was also the first one identified in the regulation of lifespan in relation to the nutrient-sensing. Indeed, nutrients are crucial modifiers of the GH/IGF-I axis, and these hormones also regulate the complex orchestration of utilization of nutrients in cell and tissues. The aim of this review is to summarize current knowledge on the reciprocal feedback among the GH/IGF-I axis, macro and micronutrients, and dietary regimens, including caloric restriction. Expanding the depth of information on this topic could open perspectives in nutrition management, prevention, and treatment of GH/IGF-I deficiency or excess during life.


2021 ◽  
pp. 125834
Author(s):  
Shujie Cai ◽  
Haotian Wang ◽  
Jun Tang ◽  
Xiufeng Tang ◽  
Peng Guan ◽  
...  

1997 ◽  
Vol 25 ◽  
pp. 327-332 ◽  
Author(s):  
Marika M. Holland ◽  
Julie L. Schramm ◽  
Judith A. Curry

Due to large uncertainties in many of the parameters used to model sea ice, it is possible that models with significantly different physical processes can be tuned to obtain realistic present-day simulations. However, in studies of climate change, it is the response of the model it various perturbations that is important, in studies response can be significantly different in sea-ice models that include or exclude various physical feedback mechanisms. Because simplifications in sea-ice physics are necessary for general circulation model experiments, it is important to assess which physical processes are essential for the accurate determination of the sensitivity of the ice pack to climate perturbations. We have attempted to address these issues using a new coupled ice-thickness distribution ocean mixed-layer model. The sensitivity of the model to surface heat-flux perturbations is examined and the importance of the ice ocean and ice-albedo feedback mechanisms in determining this sensitivity is analyzed. We find that the ice ocean and ice-albedo feedback processes are not mutually exclusive, and that they both significantly alter the model response to surface heat flux perturbations.


Sign in / Sign up

Export Citation Format

Share Document