scholarly journals Exponential Convergence of hp-DGFEM for Elliptic Problems in Polyhedral Domains

Author(s):  
Dominik Schötzau ◽  
Christoph Schwab ◽  
Thomas Wihler ◽  
Marcel Wirz
2021 ◽  
Vol 206 ◽  
pp. 112259
Author(s):  
Panpan Ren ◽  
Feng-Yu Wang

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Borsos ◽  
János Karátson

Abstract The goal of this paper is to present various types of iterative solvers: gradient iteration, Newton’s method and a quasi-Newton method, for the finite element solution of elliptic problems arising in Gao type beam models (a geometrical type of nonlinearity, with respect to the Euler–Bernoulli hypothesis). Robust behaviour, i.e., convergence independently of the mesh parameters, is proved for these methods, and they are also tested with numerical experiments.


2021 ◽  
pp. 207-218
Author(s):  
Safia Benmansour ◽  
Atika Matallah ◽  
Mustapha Meghnafi

2021 ◽  
Vol 47 (3) ◽  
Author(s):  
Timon S. Gutleb

AbstractWe present a sparse spectral method for nonlinear integro-differential Volterra equations based on the Volterra operator’s banded sparsity structure when acting on specific Jacobi polynomial bases. The method is not restricted to convolution-type kernels of the form K(x, y) = K(x − y) but instead works for general kernels at competitive speeds and with exponential convergence. We provide various numerical experiments based on an open-source implementation for problems with and without known analytic solutions and comparisons with other methods.


Sign in / Sign up

Export Citation Format

Share Document