Ultra-high Resolution Global Model Climate Change Projection for India: Towards a Data Intensive Paradigm

Author(s):  
K. Rajendran ◽  
A. Kitoh ◽  
S. Sajani
2008 ◽  
Vol 21 (21) ◽  
pp. 5708-5726 ◽  
Author(s):  
Eric P. Salathé ◽  
Richard Steed ◽  
Clifford F. Mass ◽  
Patrick H. Zahn

Abstract Simulations of future climate scenarios produced with a high-resolution climate model show markedly different trends in temperature and precipitation over the Pacific Northwest than in the global model in which it is nested, apparently because of mesoscale processes not being resolved at coarse resolution. Present-day (1990–99) and future (2020–29, 2045–54, and 2090–99) conditions are simulated at high resolution (15-km grid spacing) using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) system and forced by ECHAM5 global simulations. Simulations use the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 emissions scenario, which assumes a rapid increase in greenhouse gas concentrations. The mesoscale simulations produce regional alterations in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land–water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. Warming is significantly amplified through snow–albedo feedback in regions where snow cover is lost. Increased onshore flow in the spring reduces the daytime warming along the coast. Precipitation increases in autumn are amplified over topography because of changes in the large-scale circulation and its interaction with the terrain. The robustness of the modeling results is established through comparisons with the observed and simulated seasonal variability and with statistical downscaling results.


2021 ◽  
Author(s):  
Jayasankar C B ◽  
Rajendran K ◽  
Sajani Surendran

Abstract High-resolution regional climate model (RCM) simulations are found to be very useful in deriving realistic climate change projection information. This study uses high-resolution dynamical downscaling framework (CCSM4-WRF) for India. To delineate the advantage of high resolution, we compared the results of 9-km resolution CCSM4-WRF simulations against the 50-km resolution RCM simulations under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) programme. Quantitative estimations show that majority of CORDEX-SA models exhibit large dry bias (<-4mm/day) and low pattern correlation coefficient (PCC) over the Western Ghats (WG). Mean climatology of Indian summer monsoon (ISM) rainfall simulated by high-resolution CCSM4-WRF outperforms the CORDEX-SA RCMs with low negative biases (~ 1mm/day) and high PCC (≥ 0.755). This skill of CCSM4-WRF provides better confidence in its future projection at local scale. CCSM4-WRF projects future intensification of monsoon rainfall over most parts of India and reduction over southern WG, which is consistent with recent observed trends, but none of the CORDEX-SA RCMs could simulate this rainfall reduction. For all-India rainfall, ensemble mean of CORDEX-SA models projects an increase by 1.3 ± 0.9mm/day and CCSM4-WRF projects 0.67mm/day. Projected changes in socioeconomic variables such as population and gross domestic product (GDP) exhibit future enhancement over most parts of India but with spatial heterogeneity. Shared Socioeconomic Pathways scenarios show pronounced future population growth over Indian coastal areas, and large enhancement in productivity over urban areas. Therefore, climate change projection information of ISM rainfall, together with enhanced future population and GDP, is useful for taking necessary steps for adaptation and mitigation in a sustainable manner.


2014 ◽  
Vol 04 (02) ◽  
pp. 272-289
Author(s):  
Mario N. Nuñez ◽  
Josefina Blázquez

Sign in / Sign up

Export Citation Format

Share Document