Intelligent Transportation Systems and Wireless Access in Vehicular Environment Technology for Developing Smart Cities

Author(s):  
Jose Maria León-Coca ◽  
Daniel G. Reina ◽  
Sergio L. Toral ◽  
Federico Barrero ◽  
Nik Bessis
Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6309
Author(s):  
Mohammad Peyman ◽  
Pedro J. Copado ◽  
Rafael D. Tordecilla ◽  
Leandro do C. Martins ◽  
Fatos Xhafa ◽  
...  

With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing.These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustrated.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 332 ◽  
Author(s):  
Thiago Sobral ◽  
Teresa Galvão ◽  
José Borges

Intelligent Transportation Systems are an important enabler for the smart cities paradigm. Currently, such systems generate massive amounts of granular data that can be analyzed to better understand people’s dynamics. To address the multivariate nature of spatiotemporal urban mobility data, researchers and practitioners have developed an extensive body of research and interactive visualization tools. Data visualization provides multiple perspectives on data and supports the analytical tasks of domain experts. This article surveys related studies to analyze which topics of urban mobility were addressed and their related phenomena, and to identify the adopted visualization techniques and sensors data types. We highlight research opportunities based on our findings.


Author(s):  
Abigail Nicole Balisi ◽  
Hossein Jula ◽  
Anastasios Chassiakos

2017 ◽  
Vol 9 (7) ◽  
pp. 1120 ◽  
Author(s):  
Anandkumar Balasubramaniam ◽  
Anand Paul ◽  
Won-Hwa Hong ◽  
HyunCheol Seo ◽  
Jeong Kim

2012 ◽  
Vol 55 (12) ◽  
pp. 2908-2914 ◽  
Author(s):  
Zhang Xiong ◽  
Hao Sheng ◽  
WenGe Rong ◽  
Dave E. Cooper

Author(s):  
Liang Zhao ◽  
Yuanhua Jia

Advanced technology has ushered in the urge to enhance the travel experience. Besides the consistent desire to travel faster and more comfortably, the need to ensure transportation sustainability has remained constant. Smart cities employ top-grade technological applications to facilitate operations. Intelligent transportation systems involve the use of advanced transportation technologies. Through the integration of the Internet of Vehicles, cars in traffic can send and receive data between themselves and other vehicles and the environment. This data is processed to ensure efficient transportation by controlling traffic flows and preventing accidents. In this study, a literature review is conducted on how intelligent transportation systems contribute to environmental sustainability in smart cities. With technologies such as electricity-driven cars and autonomous vehicles, the systems minimize the emission of toxic substances to the environment while enhancing the interaction of the car with its surroundings to avoid accidents.


Sign in / Sign up

Export Citation Format

Share Document