Feature-Based 6-DoF Camera Localization Using Prior Point Cloud and Images

Author(s):  
Hyongjin Kim ◽  
Donghwa Lee ◽  
Taekjun Oh ◽  
Sang Won Lee ◽  
Yungeun Choe ◽  
...  
2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3848
Author(s):  
Xinyue Zhang ◽  
Gang Liu ◽  
Ling Jing ◽  
Siyao Chen

The heart girth parameter is an important indicator reflecting the growth and development of pigs that provides critical guidance for the optimization of healthy pig breeding. To overcome the heavy workloads and poor adaptability of traditional measurement methods currently used in pig breeding, this paper proposes an automated pig heart girth measurement method using two Kinect depth sensors. First, a two-view pig depth image acquisition platform is established for data collection; the two-view point clouds after preprocessing are registered and fused by feature-based improved 4-Point Congruent Set (4PCS) method. Second, the fused point cloud is pose-normalized, and the axillary contour is used to automatically extract the heart girth measurement point. Finally, this point is taken as the starting point to intercept the circumferential perpendicular to the ground from the pig point cloud, and the complete heart girth point cloud is obtained by mirror symmetry. The heart girth is measured along this point cloud using the shortest path method. Using the proposed method, experiments were conducted on two-view data from 26 live pigs. The results showed that the heart girth measurement absolute errors were all less than 4.19 cm, and the average relative error was 2.14%, which indicating a high accuracy and efficiency of this method.


2021 ◽  
pp. 1-1
Author(s):  
Masamichi Oka ◽  
Ryoichi Shinkuma ◽  
Takehiro Sato ◽  
Eiji Oki ◽  
Takanori Iwai ◽  
...  

Author(s):  
Uzair Nadeem ◽  
Mohammad A. A. K. Jalwana ◽  
Mohammed Bennamoun ◽  
Roberto Togneri ◽  
Ferdous Sohel

2019 ◽  
Vol 39 ◽  
pp. 484-492
Author(s):  
Yu Jin ◽  
Haitao Liao ◽  
Harry Pierson
Keyword(s):  

2013 ◽  
Vol 572 ◽  
pp. 155-158
Author(s):  
Hai Tao Zhu ◽  
Liang Cong

ntegrating section feature recognition with forward design is an effective method to reconstruct section curve and change feature architecture patterns from 2D to 3D. This paper proposes solutions to filter the points on the slices of point cloud data, automatically sequence the points on slices, recognize section curve feature, fit each curve segment and reconstruct section curves. All the relevant algorithms are implemented in Matlab. The point cloud data of sighting scope is used to validate the strategy. Also, Error analysis is carried out in Geomagic Studio. This strategy proves its feasibility and accuracy of completing reverse modeling process.


Author(s):  
D. Tosic ◽  
S. Tuttas ◽  
L. Hoegner ◽  
U. Stilla

<p><strong>Abstract.</strong> This work proposes an approach for semantic classification of an outdoor-scene point cloud acquired with a high precision Mobile Mapping System (MMS), with major goal to contribute to the automatic creation of High Definition (HD) Maps. The automatic point labeling is achieved by utilizing the combination of a feature-based approach for semantic classification of point clouds and a deep learning approach for semantic segmentation of images. Both, point cloud data, as well as the data from a multi-camera system are used for gaining spatial information in an urban scene. Two types of classification applied for this task are: 1) Feature-based approach, in which the point cloud is organized into a supervoxel structure for capturing geometric characteristics of points. Several geometric features are then extracted for appropriate representation of the local geometry, followed by removing the effect of local tendency for each supervoxel to enhance the distinction between similar structures. And lastly, the Random Forests (RF) algorithm is applied in the classification phase, for assigning labels to supervoxels and therefore to points within them. 2) The deep learning approach is employed for semantic segmentation of MMS images of the same scene. To achieve this, an implementation of Pyramid Scene Parsing Network is used. Resulting segmented images with each pixel containing a class label are then projected onto the point cloud, enabling label assignment for each point. At the end, experiment results are presented from a complex urban scene and the performance of this method is evaluated on a manually labeled dataset, for the deep learning and feature-based classification individually, as well as for the result of the labels fusion. The achieved overall accuracy with fusioned output is 0.87 on the final test set, which significantly outperforms the results of individual methods on the same point cloud. The labeled data is published on the TUM-PF Semantic-Labeling-Benchmark.</p>


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Yu Jin ◽  
Harry Pierson ◽  
Haitao Liao

Abstract Additive manufacturing (AM) has the unprecedented ability to create customized, complex, and nonparametric geometry, and it has made this ability accessible to individuals outside of traditional production environments. Geometric inspection technology, however, has yet to adapt to take full advantage of AM’s abilities. Coordinate measuring machines are accurate, but they are also slow, expensive to operate, and inaccessible to many AM users. On the other hand, 3D-scanners provide fast, high-density measurements, but there is a lack of feature-based analysis techniques for point cloud data. There exists a need for developing fast, feature-based geometric inspection techniques that can be implemented by users without specialized training in inspection according to geometric dimensioning and tolerancing conventions. This research proposes a new scale- and pose-invariant quality inspection method based on a novel location-orientation-shape (LOS) distribution derived from point cloud data. The key technique of the new method is to describe the shape and pose of key features via kernel density estimation and detect nonconformities based on statistical divergence. Numerical examples are provided and tests on physical AM builds are conducted to validate the method. The results show that the proposed inspection scheme is able to identify form, position, and orientation defects. The results also demonstrate how datum features can be incorporated into point cloud inspection, that datum features can be complex, nonparametric surfaces, and how the specification of datums can be more intuitive and meaningful, particularly for users without special training.


Sign in / Sign up

Export Citation Format

Share Document