geometric dimensioning and tolerancing
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 31)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 1 ◽  
pp. 1657-1666
Author(s):  
Joaquin Montero ◽  
Sebastian Weber ◽  
Christoph Petroll ◽  
Stefan Brenner ◽  
Matthias Bleckmann ◽  
...  

AbstractCommercially available metal Laser Powder Bed Fusion (L-PBF) systems are steadily evolving. Thus, design limitations narrow and the diversity of achievable geometries widens. This progress leads researchers to create innovative benchmarks to understand the new system capabilities. Thereby, designers can update their knowledge base in design for additive manufacturing (DfAM). To date, there are plenty of geometrical benchmarks that seek to develop generic test artefacts. Still, they are often complex to measure, and the information they deliver may not be relevant to some designers. This article proposes a geometrical benchmarking approach for metal L-PBF systems based on the designer needs. Furthermore, Geometric Dimensioning and Tolerancing (GD&T) characteristics enhance the approach. A practical use-case is presented, consisting of developing, manufacturing, and measuring a meaningful and straightforward geometric test artefact. Moreover, optical measuring systems are used to create a tailored uncertainty map for benchmarking two different L-PBF systems.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3575
Author(s):  
Baltej Singh Rupal ◽  
Tegbir Singh ◽  
Tonya Wolfe ◽  
Marc Secanell ◽  
Ahmed Jawad Qureshi

The precision of LPBF manufactured parts is quantified by characterizing the geometric tolerances based on the ISO 1101 standard. However, there are research gaps in the characterization of geometric tolerance of LPBF parts. A literature survey reveals three significant research gaps: (1) systematic design of benchmarks for geometric tolerance characterization with minimum experimentation; (2) holistic geometric tolerance characterization in different orientations and with varying feature sizes; and (3) a comparison of results, with and without the base plate. This research article focuses on addressing these issues by systematically designing a benchmark that can characterize geometric tolerances in three principal planar directions. The designed benchmark was simulated using the finite element method, manufactured using a commercial LPBF process using stainless steel (SS 316L) powder, and the geometric tolerances were characterized. The effect of base plate removal on the geometric tolerances was quantified. Simulation and experimental results were compared to understand tolerance variations using process variations such as base plate removal, orientation, and size. The tolerance zone variations not only validate the need for systematically designed benchmarks, but also for tri-planar characterization. Simulation and experimental result comparisons provide quantitative information about the applicability of numerical simulation for geometric tolerance prediction for the LPBF process.


Author(s):  
Tikran Kocharian ◽  
Sanjivan Manoharan

Abstract Geometric Dimensioning and Tolerancing (GD&T), due to the inherent complexity, is a challenging topic to teach and learn, especially at the undergraduate freshman level. Many institutes either cover GD&T on a superficial level or choose to overlook it. Incorporating such a broad subject in an already busy curricula remains a major challenge for many academic institutes, including ours. The knowledge and skill level of our students in GD&T at the beginning of their co-op is a major concern for several employers. These employers have to expend significant resources to train our students and graduates. To address this growing concern, a practical project was incorporated into a freshman introductory engineering course; a Ryobi hedge trimmer Model No. RY39500 was utilized. The students were divided into five groups, and each group was given a mechanical component from the assembly. First, each group was tasked with taking the necessary measurements to create a Computer Aided Design (CAD) model of their component in an effort to commence the reverse engineering process. The CAD model was then additively manufactured using fused deposition modeling. A detailed drawing of each component was created and GD&T concepts and symbols were applied to the drawing following ASME/ANSI Y14.5-2009 standards. The project was very well received by the students. It enhanced their understanding and skills necessary to implement GD&T concepts and symbols both in practice and in preparing engineering drawings. The 3-D printed parts were shared among the groups and the manufactured parts were fit together to replicate the real life assembling.


Sign in / Sign up

Export Citation Format

Share Document