scholarly journals Bounding the Dimensions of Rational Cohomology Groups

Author(s):  
Christopher P. Bendel ◽  
Brian D. Boe ◽  
Christopher M. Drupieski ◽  
Daniel K. Nakano ◽  
Brian J. Parshall ◽  
...  
2020 ◽  
Vol 8 ◽  
Author(s):  
ALEXANDER KUPERS ◽  
OSCAR RANDAL-WILLIAMS

We completely describe the algebraic part of the rational cohomology of the Torelli groups of the manifolds $\#^{g}S^{n}\times S^{n}$ relative to a disc in a stable range, for $2n\geqslant 6$ . Our calculation is also valid for $2n=2$ assuming that the rational cohomology groups of these Torelli groups are finite-dimensional in a stable range.


2020 ◽  
Vol 8 ◽  
Author(s):  
Alexander Kupers ◽  
Oscar Randal-Williams

Abstract The Torelli group of $W_g = \#^g S^n \times S^n$ is the group of diffeomorphisms of $W_g$ fixing a disc that act trivially on $H_n(W_g;\mathbb{Z} )$ . The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of $\text{Sp}_{2g}(\mathbb{Z} )$ or $\text{O}_{g,g}(\mathbb{Z} )$ . In this article we prove that for $2n \geq 6$ and $g \geq 2$ , they are in fact algebraic representations. Combined with previous work, this determines the rational cohomology of the Torelli group in a stable range. We further prove that the classifying space of the Torelli group is nilpotent.


2004 ◽  
Vol 11 (4) ◽  
pp. 613-633
Author(s):  
V. Baladze ◽  
L. Turmanidze

Abstract Border homology and cohomology groups of pairs of uniform spaces are defined and studied. These groups give an intrinsic characterization of Čech type homology and cohomology groups of the remainder of a uniform space.


2016 ◽  
Vol 458 ◽  
pp. 120-133 ◽  
Author(s):  
Akinari Hoshi ◽  
Ming-chang Kang ◽  
Aiichi Yamasaki

2016 ◽  
Vol 27 (06) ◽  
pp. 1650057 ◽  
Author(s):  
Haibo Chen ◽  
Jianzhi Han ◽  
Yucai Su ◽  
Ying Xu

In this paper, we introduce two kinds of Lie conformal algebras, associated with the loop Schrödinger–Virasoro Lie algebra and the extended loop Schrödinger–Virasoro Lie algebra, respectively. The conformal derivations, the second cohomology groups of these two conformal algebras are completely determined. And nontrivial free conformal modules of rank one and [Formula: see text]-graded free intermediate series modules over these two conformal algebras are also classified in the present paper.


2018 ◽  
Vol 29 (12) ◽  
pp. 1850075
Author(s):  
Kotaro Kawai ◽  
Hông Vân Lê ◽  
Lorenz Schwachhöfer

In this paper, we show that a parallel differential form [Formula: see text] of even degree on a Riemannian manifold allows to define a natural differential both on [Formula: see text] and [Formula: see text], defined via the Frölicher–Nijenhuis bracket. For instance, on a Kähler manifold, these operators are the complex differential and the Dolbeault differential, respectively. We investigate this construction when taking the differential with respect to the canonical parallel [Formula: see text]-form on a [Formula: see text]- and [Formula: see text]-manifold, respectively. We calculate the cohomology groups of [Formula: see text] and give a partial description of the cohomology of [Formula: see text].


1966 ◽  
Vol 27 (2) ◽  
pp. 531-542 ◽  
Author(s):  
G. Hochschild ◽  
G. D. Mostow

Let G be a complex analytic group, and let A be the representation space of a finite-dimensional complex analytic representation of G. We consider the cohomology for G in A, such as would be obtained in the usual way from the complex of holomorphic cochains for G in A. Actually, we shall use a more conceptual categorical definition, which is equivalent to the explicit one by cochains. In the context of finite-dimensional representation theory, nothing substantial is lost by assuming that G is a linear group. Under this assumption, it is the main purpose of this paper to relate the holomorphic cohomology of G to Lie algebra cohomology, and to the rational cohomology, in the sense of [1], of algebraic hulls of G. This is accomplished by using the known structure theory for complex analytic linear groups in combination with certain easily established results concerning the cohomology of semidirect products. The main results are Theorem 4.1 (whose hypothesis is always satisfied by a complex analytic linear group) and Theorems 5.1 and 5.2. These last two theorems show that the usual abundantly used connections between complex analytic representations of complex analytic groups and rational representations of algebraic groups extend fully to the superstructure of cohomology.


Author(s):  
Christian Voigt

AbstractWe consider smooth actions of totally disconnected groups on simplicial complexes and compare different equivariant cohomology groups associated to such actions. Our main result is that the bivariant equivariant cohomology theory introduced by Baum and Schneider can be described using equivariant periodic cyclic homology. This provides a new approach to the construction of Baum and Schneider as well as a computation of equivariant periodic cyclic homology for a natural class of examples. In addition we discuss the relation between cosheaf homology and equivariant Bredon homology. Since the theory of Baum and Schneider generalizes cosheaf homology we finally see that all these approaches to equivariant cohomology for totally disconnected groups are closely related.


Sign in / Sign up

Export Citation Format

Share Document