Numerical Simulations of Interacting Galaxies: Bar Morphology

Author(s):  
J. C. Luna Sánchez ◽  
M. A. Rodríguez Meza ◽  
A. Arrieta ◽  
R. Gabbasov
Author(s):  
Maggie McLean

Over ninety percent of the matter in the universe is believed to be “dark matter,” a mysterious form of matter the nature of which is still unknown. Since it cannot be detected directly, dark matter can only be inferred from its effect on visible matter. This leaves a significant gap in our knowledge. Without the ability to measure the influence of dark matter on other dark matter, we could miss a possible fifth fundamental force which mediates dark matter self-interactions. We propose a means of constraining the existence of a “fifth-force” by observing galaxies that are in the process of merging. Using numerical simulations, we examine the effect of including a hypothetical fifth-force on the tidal disruption of visible matter during galaxy mergers. We find distinct differences in the formation and appearance of tidal features produced during these interactions, providing an observable constraint on the strength of any “fifth-force.” The sheer volume of interacting galaxies that can be observed makes tidal forces a valuable tool in studying a fundamental problem that would otherwise pose a great challenge for physicists.


2018 ◽  
Vol 1103 ◽  
pp. 012010
Author(s):  
Vladimir Prigarin ◽  
Viktor Protasov ◽  
Eugeny Berendeev ◽  
Dmitry Karavaev ◽  
Alexander Serenko ◽  
...  

2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


2007 ◽  
Vol 17 (4) ◽  
pp. 347-380 ◽  
Author(s):  
Mohammad P. Fard ◽  
Denise Levesque ◽  
Stuart Morrison ◽  
Nasser Ashgriz ◽  
J. Mostaghimi

Sign in / Sign up

Export Citation Format

Share Document