Seismic Assessment of an Existing Irregular RC Building According to Eurocode 8 Methods

Author(s):  
Alessandra La Brusco ◽  
Valentine Mariani ◽  
Marco Tanganelli ◽  
Stefania Viti ◽  
Mario De Stefano
Author(s):  
Gerardo M. Verderame ◽  
Flavia De Luca ◽  
Gaetano Manfredi

Given the interest earned recently by modern heritage structures, seismic assessment criteria of Eurocode 8, for ordinary reinforced concrete structures, are applied to a modern heritage RC building. The case study, the Tower of the Nations in Naples, allows a discussion on knowledge approaches, analysis methodologies and modeling choices that can be considered. Modal dynamic identification, in situ inspections, and testing provided the necessary knowledge of the structure. Linear and nonlinear models of the structure are built up accounting for tuff infills' stiffness and strength contribution. Numerical modal properties are compared with those obtained through dynamic identification. Lumped plasticity model for reinforced concrete elements and equivalent strut macro models for tuff and concrete infills are employed for the nonlinear model of the structure. Seismic assessment through nonlinear dynamic analyses is carried out for two Limit States. Finally, fragility curves through cloud analysis are obtained for the different limit states considered.


Author(s):  
Gerardo M. Verderame ◽  
Flavia De Luca ◽  
Gaetano Manfredi

Given the interest earned recently by modern heritage structures, seismic assessment criteria of Eurocode 8, for ordinary reinforced concrete structures, are applied to a modern heritage RC building. The case study, the Tower of the Nations in Naples, allows a discussion on knowledge approaches, analysis methodologies and modeling choices that can be considered. Modal dynamic identification, in situ inspections, and testing provided the necessary knowledge of the structure. Linear and nonlinear models of the structure are built up accounting for tuff infills' stiffness and strength contribution. Numerical modal properties are compared with those obtained through dynamic identification. Lumped plasticity model for reinforced concrete elements and equivalent strut macro models for tuff and concrete infills are employed for the nonlinear model of the structure. Seismic assessment through nonlinear dynamic analyses is carried out for two Limit States. Finally, fragility curves through cloud analysis are obtained for the different limit states considered.


2014 ◽  
Vol 39 (11) ◽  
pp. 7691-7699 ◽  
Author(s):  
R. A. Hakim ◽  
M. S. Alama ◽  
S. A. Ashour

Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 392
Author(s):  
Predrag Blagojević ◽  
Svetlana Brzev ◽  
Radovan Cvetković

The paper presents a study on the existing low-rise unreinforced masonry (URM) buildings constructed in the period from 1945 to 1980 in Serbia and neighbouring countries in the Balkans. Buildings of this typology experienced damage in a few earthquakes in the region, including the 2010 Kraljevo, Serbia earthquake and the 2020 Petrinja, Croatia earthquake. The focus of the study is a seismic design approach for Simple masonry buildings according to Eurocode 8, Part 1, which is based on the minimum requirements for the total wall area relative to the floor plan area, which is referred to as Wall Index (WI) in this paper. Although the intention of Eurocode 8 is to use WI for design of new buildings, the authors believe that it could be also used for seismic assessment of existing masonry buildings in pre- and post-earthquake situations. A study on 23 URM buildings damaged in the 2010 Kraljevo, Serbia earthquake has been presented to examine a relationship between the WI and the extent of earthquake damage. Seismic evaluation of a typical 3-storey URM building damaged in the 2010 earthquake was performed according to the requirements of seismic design codes from the former Yugoslavia and Eurocode 8.


Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 151 ◽  
Author(s):  
João Estêvão

The selection of a given method for the seismic vulnerability assessment of buildings is mostly dependent on the scale of the analysis. Results obtained in large-scale studies are usually less accurate than the ones obtained in small-scale studies. In this paper a study about the feasibility of using Artificial Neural Networks (ANNs) to carry out fast and accurate large-scale seismic vulnerability studies has been presented. In the proposed approach, an ANN was used to obtain a simplified capacity curve of a building typology, in order to use the N2 method to assess the structural seismic behaviour, as presented in the Annex B of the Eurocode 8. Aiming to study the accuracy of the proposed approach, two ANNs with equal architectures were trained with a different number of vectors, trying to evaluate the ANN capacity to achieve good results in domains of the problem which are not well represented by the training vectors. The case study presented in this work allowed the conclusion that the ANN precision is very dependent on the amount of data used to train the ANN and demonstrated that it is possible to use ANN to obtain simplified capacity curves for seismic assessment purposes with high precision.


Author(s):  
Annalisa Mele ◽  
Andrea Miano ◽  
Diego Di Martire ◽  
Donato Infante ◽  
Andrea Prota ◽  
...  

2014 ◽  
Vol 43 (11) ◽  
pp. 1603-1619 ◽  
Author(s):  
Jiuk Shin ◽  
JunHee Kim ◽  
Kihak Lee

Sign in / Sign up

Export Citation Format

Share Document