Architectures for Ultra-Low-Power Multi-Channel Resonator-Based Wireless Transceivers

Author(s):  
Phillip M. Nadeau ◽  
Arun Paidimarri ◽  
Patrick P. Mercier ◽  
Anantha P. Chandrakasan
2021 ◽  
Vol 10 (2) ◽  
pp. 31
Author(s):  
Omar Abdelatty ◽  
Xing Chen ◽  
Abdullah Alghaihab ◽  
David Wentzloff

Energy-efficient wireless connectivity plays an important role in scaling both battery-less and battery-powered Internet-of-Things (IoT) devices. The power consumption in these devices is dominated by the wireless transceivers which limit the battery’s lifetime. Different strategies have been proposed to tackle these issues both in physical and network layers. The ultimate goal is to lower the power consumption without sacrificing other important metrics like latency, transmission range and robust operation under the presence of interference. Joint efforts in designing energy-efficient wireless protocols and low-power radio architectures result in achieving sub-100 μW operation. One technique to lower power is back-channel (BC) communication which allows ultra-low power (ULP) receivers to communicate efficiently with commonly used wireless standards like Bluetooth Low-Energy (BLE) while utilizing the already-deployed infrastructure. In this paper, we present a review of BLE back-channel communication and its forms. Additionally, a comprehensive survey of ULP radio design trends and techniques in both Bluetooth transmitters and receivers is presented.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

2010 ◽  
Vol E93-C (6) ◽  
pp. 785-795
Author(s):  
Sung-Jin KIM ◽  
Minchang CHO ◽  
SeongHwan CHO
Keyword(s):  
Rfid Tag ◽  

Sign in / Sign up

Export Citation Format

Share Document