scholarly journals Bluetooth Communication Leveraging Ultra-Low Power Radio Design

2021 ◽  
Vol 10 (2) ◽  
pp. 31
Author(s):  
Omar Abdelatty ◽  
Xing Chen ◽  
Abdullah Alghaihab ◽  
David Wentzloff

Energy-efficient wireless connectivity plays an important role in scaling both battery-less and battery-powered Internet-of-Things (IoT) devices. The power consumption in these devices is dominated by the wireless transceivers which limit the battery’s lifetime. Different strategies have been proposed to tackle these issues both in physical and network layers. The ultimate goal is to lower the power consumption without sacrificing other important metrics like latency, transmission range and robust operation under the presence of interference. Joint efforts in designing energy-efficient wireless protocols and low-power radio architectures result in achieving sub-100 μW operation. One technique to lower power is back-channel (BC) communication which allows ultra-low power (ULP) receivers to communicate efficiently with commonly used wireless standards like Bluetooth Low-Energy (BLE) while utilizing the already-deployed infrastructure. In this paper, we present a review of BLE back-channel communication and its forms. Additionally, a comprehensive survey of ULP radio design trends and techniques in both Bluetooth transmitters and receivers is presented.

Impact ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 79-81
Author(s):  
Hiromi Yuasa

The devices we use on a day-to-day basis require a substantial amount of energy to power, but even more energy is left unused and goes to waste. What if our devices were (at least nearly) completely energy efficient? This would help pave the way towards a greener and more energy smart future. This concept is something one team of Japanese researchers is working on, by using quasi antiferromagnetic (AFM) materials which work successfully at the nanoscale. Professor Hiroma Yuasa is based at Kyushu University, Japan, where her laboratory is working on spintronics research. Currently, her focus includes spin current physics and spin torque in artificial magnetic structures, including the applications of these, such as in energy harvesting and ultra-low power consumption devices, which could help in achieving a greener future.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Nano Letters ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
T. Barois ◽  
A. Ayari ◽  
P. Vincent ◽  
S. Perisanu ◽  
P. Poncharal ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 889
Author(s):  
Xiaoying Deng ◽  
Peiqi Tan

An ultra-low-power K-band LC-VCO (voltage-controlled oscillator) with a wide tuning range is proposed in this paper. Based on the current-reuse topology, a dynamic back-gate-biasing technique is utilized to reduce power consumption and increase tuning range. With this technique, small dimension cross-coupled pairs are allowed, reducing parasitic capacitors and power consumption. Implemented in SMIC 55 nm 1P7M CMOS process, the proposed VCO achieves a frequency tuning range of 19.1% from 22.2 GHz to 26.9 GHz, consuming only 1.9 mW–2.1 mW from 1.2 V supply and occupying a core area of 0.043 mm2. The phase noise ranges from −107.1 dBC/HZ to −101.9 dBc/Hz at 1 MHz offset over the whole tuning range, while the total harmonic distortion (THD) and output power achieve −40.6 dB and −2.9 dBm, respectively.


Author(s):  
Ace Dimitrievski ◽  
Sonja Filiposka ◽  
Francisco José Melero ◽  
Eftim Zdravevski ◽  
Petre Lameski ◽  
...  

Connected health is expected to introduce an improvement in providing healthcare and doctor-patient communication while at the same time reducing cost. Connected health would introduce an even more significant gap between healthcare quality for urban areas with physical proximity and better communication to providers and the portion of rural areas with numerous connectivity issues. We identify these challenges using user scenarios and propose LoRa based architecture for addressing these challenges. We focus on the energy management of battery-powered, affordable IoT devices for long-term operation, providing important information about the care receivers’ well-being. Using an external ultra-low-power timer, we extended the battery life in the order of tens of times, compared to relying on low power modes of the microcontroller.


Sign in / Sign up

Export Citation Format

Share Document