Type II Cells as Progenitors in Alveolar Repair

Author(s):  
Yuru Liu
Keyword(s):  
Author(s):  
R. G. Gerrity ◽  
M. Richardson

Dogs were injected intravenously with E_. coli endotoxin (2 mg/kg), and lung samples were taken at 15 min., 1 hr. and 24 hrs. At 15 min., occlusion of pulmonary capillaries by degranulating platelets and polymorphonuclear leukocytes (PML) was evident (Fig. 1). Capillary endothelium was intact but endothelial damage in small arteries and arterioles, accompanied by intraalveolar hemorrhage, was frequent (Fig. 2). Sloughing of the surfactant layer from alveolar epithelium was evident (Fig. 1). At 1 hr., platelet-PML plugs were no longer seen in capillaries, the endothelium of which was often vacuolated (Fig. 3). Interstitial edema and destruction of alveolar epithelium were seen, and type II cells had discharged their granules into the alveoli (Fig. 4). At 24 hr. phagocytic PML's were frequent in peripheral alveoli, while centrally, alveoli and vessels were packed with fibrin thrombi and PML's (Fig. 5). In similar dogs rendered thrombocytopenic with anti-platelet serum, lung ultrastructure was similar to that of controls, although PML's were more frequently seen in capillaries in the former (Fig. 6).


1989 ◽  
Vol 257 (3) ◽  
pp. C528-C536 ◽  
Author(s):  
B. D. Uhal ◽  
S. R. Rannels ◽  
D. E. Rannels

Type II pneumocytes were isolated by either Percoll density gradient centrifugation or by immunoglobulin G (IgG) panning from the lungs of normal rats and the right lung of rats subjected to left pneumonectomy. Cells were studied at 7- (pnx-7) and 15- (pnx-15) days postoperative, times during and after, respectively, rapid compensatory growth of the right lung. Acridine orange staining permitted resolution of type II cells from contaminants on the basis of high red fluorescence (greater than 590 nm). Simultaneous measurement of forward-angle light scatter (FALS) suggested a shift of pnx-7 cells toward greater size, which was reversed in pnx-15 cells. By Percoll gradient isolation, approximately 15% of pnx-7 cells analyzed were above the mean FALS of control cells. In contrast, approximately 30% of the pnx-7 cells isolated by IgG panning were above the mean FALS of corresponding control cells. Biochemical analyses of pnx-7 cells separated by cell sorting into "high FALS" and "low FALS" subgroups revealed that high FALS type II cells contained 50% more protein (P less than 0.05) and 140% more RNA (P less than 0.01) than low FALS cells, with no significant change in cellular DNA content. These data are consistent with previous studies of type II cells isolated from the lungs of pneumonectomized animals and confirm the presence of hypertrophic cells in these preparations. They provide a foundation from which to design further flow cytometric studies of the role of hypertrophic type II pneumocytes in compensatory lung growth.


Respiration ◽  
1984 ◽  
Vol 46 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Sanae Shimura ◽  
Shinsaku Maeda ◽  
Tamotsu Takismima

1994 ◽  
Vol 267 (5) ◽  
pp. L625-L633 ◽  
Author(s):  
L. I. Gobran ◽  
Z. X. Xu ◽  
Z. Lu ◽  
S. A. Rooney

ATP is known to stimulate surfactant phospholipid secretion in type II cells, and there is evidence that this effect is mediated by a P2 purinoceptor. At least five subtypes of the P2 receptor have been reported, but it is not clear which one exists on the type II cell. To determine whether it is the P2u subtype, at which UTP is equipotent with ATP, we have compared the effects of ATP and UTP on phosphatidylcholine secretion and second messenger formation in primary cultures of rat type II cells. ATP and UTP were equally potent in stimulating phosphatidylcholine secretion and phospholipase D activation. The potency order, UTP = ATP > ADP > 2-methylthio-ATP, was the same as that reported for the P2u receptor. UTP stimulated diacylglycerol and phosphatidic acid formation to the same extent as ATP. ATP also increased choline formation. Formation of diacylglycerol was biphasic, and the first peak in response to ATP was previously shown to be associated with inositol trisphosphate formation. Northern analysis showed that the P2u receptor gene was expressed to a greater extent in type II cells than in whole lung. These data suggest that ATP and UTP act via a P2u receptor that is coupled to phosphoinositide-specific phospholipase C with subsequent activation of phospholipase D acting on phosphatidylcholine. ATP has also been reported to act at an additional type II cell receptor coupled to adenylate cyclase. In contrast, UTP did not promote adenosine 3',5'-cyclic monophosphate formation and therefore does not act at that receptor.


1986 ◽  
Vol 35 (24) ◽  
pp. 4537-4542 ◽  
Author(s):  
Tory M. Hagen ◽  
Lou Ann Brown ◽  
Dean P. Jones

Sign in / Sign up

Export Citation Format

Share Document