Ultrastructure of pulmonary microvasculature in acute endotoxemia

Author(s):  
R. G. Gerrity ◽  
M. Richardson

Dogs were injected intravenously with E_. coli endotoxin (2 mg/kg), and lung samples were taken at 15 min., 1 hr. and 24 hrs. At 15 min., occlusion of pulmonary capillaries by degranulating platelets and polymorphonuclear leukocytes (PML) was evident (Fig. 1). Capillary endothelium was intact but endothelial damage in small arteries and arterioles, accompanied by intraalveolar hemorrhage, was frequent (Fig. 2). Sloughing of the surfactant layer from alveolar epithelium was evident (Fig. 1). At 1 hr., platelet-PML plugs were no longer seen in capillaries, the endothelium of which was often vacuolated (Fig. 3). Interstitial edema and destruction of alveolar epithelium were seen, and type II cells had discharged their granules into the alveoli (Fig. 4). At 24 hr. phagocytic PML's were frequent in peripheral alveoli, while centrally, alveoli and vessels were packed with fibrin thrombi and PML's (Fig. 5). In similar dogs rendered thrombocytopenic with anti-platelet serum, lung ultrastructure was similar to that of controls, although PML's were more frequently seen in capillaries in the former (Fig. 6).

1991 ◽  
Vol 260 (2) ◽  
pp. L113-L122 ◽  
Author(s):  
S. L. Young ◽  
E. K. Fram ◽  
C. L. Spain ◽  
E. W. Larson

At a late stage of fetal development, the mammalian alveolar epithelium undergoes an abrupt differentiation as a part of the preparation of the lung for the postnatal demands of gas exchange. Some of the most striking changes occur in the type II pneumocytes as they lose their glycogen and start to produce the lamellated inclusion granules that contain pulmonary surfactant. Premature birth before adequate type II cell maturation results in the neonatal respiratory distress syndrome, which is frequently fatal. We have used serial ultrathin sectioning, electron microscopy, and three-dimensional reconstructions to study the ultrastructural features of maturation of rat type II cells from a single rat each at age gestational day 20 through adult stages. We found evidence over this time span for compartmentation of several secretory granule precursors within type II cells. Changes in the polarization of lamellar bodies were observed over the time period studied. We also found marked gestational changes in the number and morphology of type II cell cytoplasmic processes that perforate the basement membrane. Type II cell mitochondria changed in shape during postnatal development from single, spherical to complex, branched structures. Volume composition obtained from serial sections of a small number of type II cells agreed closely with published morphometric data, indicating that throughout the animal's lifespan, type II cells are a homogenous population.


1992 ◽  
Vol 262 (4) ◽  
pp. L446-L453 ◽  
Author(s):  
N. J. Gross ◽  
R. M. Schultz

Pulmonary alveolar surfactant is secreted by the alveolar epithelium in the form of lamellar bodylike structures that evolve sequentially into tubular myelin and vesicular forms that can be separated by centrifugation. Using an in vitro procedure by which the extracellular metabolism of pulmonary surfactant can be mimicked, namely cyclic variation in surface area, we previously reported that serine protease activity, which we called “convertase,” was required for the conversion of tubular myelin to the vesicular form. In the present studies we explored the biochemical requirements of this activity and sought the enzyme in alveolar products. Convertase activity has unusual requirements; in addition to being dependent on repetitive variations in surface area (cycling), it requires the presence of a high g fraction of lung secretions that is heat stable and not inhibitable by diisopropyl fluorophosphate (DFP) or alpha 1-antitrypsin, both typical serine protease inhibitors. The enzyme does not require calcium ions and has a pH optimum of 7.4. Convertase appears to be a component of surfactant itself because the ability of purified surfactant to convert to the vesicular form on cycling is impaired by pretreating it with DFP. A protein of Mr 75,000 that reacts with DFP and is heat sensitive was found in alveolar lavage, lamellar body preparations, and lung homogenate. It copurifies with lung surfactant in sucrose gradients. A similar DFP-reactive protein was observed in stable human neoplastic peripheral airway cell lines that express type II properties, suggesting that it may be a product of type II cells. We tentatively conclude that surfactant convertase is a 75,000 serine protease that is closely associated with surfactant phospholipid and that may be a product of alveolar type II cells.


1999 ◽  
Vol 19 (5) ◽  
pp. 461-471 ◽  
Author(s):  
Salil K. Das ◽  
Shyamali Mukherjee

Granular type II cells located in the alveolar epithelium synthesize and secrete pulmonary surfactant and have specialized ion transport system. Alveolar type II cells are stimulated to secrete pulmonary surfactant by a variety of agonists. One mechanism by which extracellular signals are perceived by cells is the mobilization of intracellular Ca2+. Peripheral benzodiazepine receptors (PBRs) are present in both peripheral tissues and central nervous system. We have previously reported the presence of high density PBRs in lung and alveolar type II cells. It is known that both PBRs and beta-adrenergic receptors (beta-ARs) play an important role in cellular Ca2+ transport. Furthermore, we have suggested earlier that PBRs are someway functionally associated with the beta-ARs. The objective of the present study was to determine whether PBRs play any role in the secretion of surfactant by alveolar type II cells. Alveolar type II cells were isolated from normal weanling guinea pigs by panning method and incubated with 3H-palmitic acid in minimum essential medium to synthesize labelled dipalmitoyl phosphatidylcholine (DPPC). After washing, the cells were treated at 37°C for one hour with 10 μM isoproterenol (IP) in the presence and absence of 10 μM Ro 5-4864, an agonist for PBRs. After one hour, the release of labelled DPPC in the medium was analyzed. The control cells released DPPC without any addition of a ligand. However, the treatment of cells with IP, Ro 5-4864 and IP + Ro 5-4864 caused 24, 52 and 171% increase in the secretion of DPPC, respectively. In another experiment, type II cells were loaded with Fura-2 dye and treated with either IP or epineprine or Ro 5-4864. Both isoproterenol and epinephrine caused a significant increase in the level of cytosolic free Ca2+. However, Ro 5-4864 caused not only a decrease in the level of cytosolic free Ca2+ but also counteracted the stimulatory effect of IP. This may suggest that while ligands for ARs stimulate Ca2+ release into cytosol, the ligand for PBRs stimulates efflux of Ca2+ in alveolar type cells. Thus, the increased secretion of surfactant by the ligand of PBRs in alveolar type II cells may be mediated through its effects on increased Ca2+ efflux.


1997 ◽  
Vol 273 (2) ◽  
pp. L389-L394
Author(s):  
S. R. Rannels ◽  
L. Liu ◽  
T. E. Weaver

Glycogen accumulates to significant levels in epithelial cells of the developing respiratory tract. Mobilization of glycogen stores is regulated differentially along the respiratory epithelium such that glycogenolysis in the alveolar epithelium (the site of surfactant synthesis) precedes that in the bronchial and bronchiolar epithelium. The initial step in glycogen degradation is catalyzed by glycogen phosphorylase, which exists as three genetically distinct isozymes referred to as muscle, liver, and brain isoforms. The goal of this study was to characterize the temporal and spatial expression of each of the glycogen phosphorylase isozymes in developing lung to determine which isoform(s) was associated with glycogen mobilization in the fetal type II epithelial cell. RNA levels encoding glycogen phosphorylase were assessed by ribonuclease protection assay using isoform-specific antisense probes. RNAs encoding the brain and liver isozymes were detected in isolated day 20 fetal type II epithelial cells and at lower levels in adult type II cells. The muscle isoform RNA was barely detectable in fetal type II cells and was undetectable in adult type II cells. Expression of brain and liver isoform RNAs was higher in whole fetal lung than in fetal type II cells. Consistent with this result, in situ hybridization studies demonstrated widespread expression of the brain and liver isoforms in developing lung tissues; in contrast, expression of the muscle isoform was restricted to the pulmonary vein. Glycogen phosphorylase enzyme activity corresponding to the brain isoform was clearly detected in isolated fetal type II cells; however, the majority of enzyme activity migrated as two bands with distinct electrophoretic mobilities that may have been the result of isoform heterodimerization. Collectively, these results suggest that the brain and liver isoforms of glycogen phosphorylase may be involved in mobilization of type II cell glycogen during late fetal lung development.


1991 ◽  
Vol 261 (4) ◽  
pp. L110-L117 ◽  
Author(s):  
Bruce D. Uhal ◽  
Kevin M. Flowers ◽  
D. Eugene Rannels

In adult animals, the type II pneumocyte is progenitor of both the type I and type II alveolar epithelium. In primary culture, however, the fate of this cell is uncertain. Type II cells in culture lose their differentiated properties and eventually resemble type I cells, but a lack of specific markers has complicated the characterization of the phenotype acquired in vitro. Furthermore, limited proliferation of these cells in vitro has precluded definition of the relationship between type II cell proliferation and differentiation. Recent work in this laboratory has involved the correlation of flow cytometric cell cycle analysis with phenotype markers. Initial results indicate that isolation of type II cells induces cell cycle block similar to that sustained by other cell types in response to stress. In addition, preliminary evaluation of phenotype suggests that traditional markers become ambiguous beyond the 1st day of primary culture. These results raise concern related to the interpretation of experiments conducted in vitro. This report discusses the implications of these findings and directions for future work. alveolar epithelium; bromodeoxyuridine; cell cycle block; flow cytometry; lung injury


2009 ◽  
Vol 297 (2) ◽  
pp. L286-L298 ◽  
Author(s):  
Yan Xu ◽  
Chika Saegusa ◽  
Angelica Schehr ◽  
Shawn Grant ◽  
Jeffrey A. Whitsett ◽  
...  

A number of transcriptional pathways regulating fetal lung development are active during repair of the injured lung. We hypothesized that C/EBPα, a transcription factor critical for lung maturation, plays a role in protection of the alveolar epithelium following hyperoxic injury of the mature lung. Transgenic CebpαΔ/Δmice, in which Cebpα was conditionally deleted from Clara cells and type II cells after birth, were developed. While no pulmonary abnormalities were observed in the CebpαΔ/Δmice (7–8 wk old) under normal conditions, the mice were highly susceptible to hyperoxia. CebpαΔ/Δmice died within 4 days of exposure to 95% oxygen in association with severe lung inflammation, altered maturation of surfactant protein B and C, decreased surfactant lipid secretion, and abnormal lung mechanics at a time when all control mice survived. mRNA microarray analysis of isolated type II cells at 0, 2, and 24 h of hyperoxia demonstrated the reduced expression of number of genes regulating surfactant lipid and protein homeostasis, including Srebf, Scap, Lpcat1, Abca3, Sftpb, and Napsa. Genes influencing cell signaling or immune responses were induced in the lungs of CebpαΔ/Δmice. C/EBPα was required for the regulation of genes associated with surfactant lipid homeostasis, surfactant protein biosynthesis, processing and transport, defense response to stress, and cell redox homeostasis during exposure to hyperoxia. While C/EBPα did not play a critical role in postnatal pulmonary function under normal conditions, C/EBPα mediated protection of the lung during acute lung injury induced by hyperoxia.


2017 ◽  
Vol 313 (1) ◽  
pp. L41-L51 ◽  
Author(s):  
Qian Chen ◽  
Varsha Suresh Kumar ◽  
Johanna Finn ◽  
Dianhua Jiang ◽  
Jiurong Liang ◽  
...  

The alveolar epithelium is composed of type I cells covering most of the gas-blood exchange surface and type II cells secreting surfactant that lowers surface tension of alveoli to prevent alveolar collapse. Here, we have identified a subgroup of type II cells expressing a higher level of cell surface molecule CD44 (CD44high type II cells) that composed ~3% of total type II cells in 5–10-wk-old mice. These cells were preferentially apposed to lung capillaries. They displayed a higher proliferation rate and augmented differentiation capacity into type I cells and the ability to form alveolar organoids compared with CD44low type II cells. Moreover, in aged mice, 18–24 mo old, the percentage of CD44high type II cells among all type II cells was increased, but these cells showed decreased progenitor properties. Thus CD44high type II cells likely represent a type II cell subpopulation important for constitutive regulation of alveolar homeostasis.


2000 ◽  
Vol 279 (6) ◽  
pp. L1038-L1046 ◽  
Author(s):  
Cheng-Ming Li ◽  
Jody Khosla ◽  
Ines Pagan ◽  
Paul Hoyle ◽  
Philip L. Sannes

Fibroblast growth factor (FGF)-2, which stimulates DNA synthesis by type II cells in the lung, has been shown to be regulated by transforming growth factor (TGF)-β1, an important inflammatory cytokine, in vascular epithelium. The goal of this study was to determine if FGF-2 production by alveolar type II cells is modulated by TGF-β1 or FGF-1, which also stimulates DNA synthesis by type II cells. Isolated rat type II cells were exposed to 0–40 ng/ml of TGF-β1 or 0–500 ng/ml of FGF-1 in serum-free medium for 1–5 days. With a specific immunoassay, significant increases of FGF-2 protein in type II cell lysates to levels above those in control cells were achieved after 1 day of exposure to 100 ng/ml of FGF-1 and after 3 days of treatment with 8 ng/ml of TGF-β1. Similarly, transcripts for FGF-2 were dramatically increased above those in control cells with TGF-β1 or FGF-1, as were those for FGF receptor-1. These results demonstrate important regulatory links between FGF-2 and both TGF-β1 and FGF-1 in the alveolar epithelium that could contribute to the regulation of normal cell turnover, development, and the repair processes after injury in the lung.


1993 ◽  
Vol 265 (4) ◽  
pp. L330-L339 ◽  
Author(s):  
F. J. Walther ◽  
R. David-Cu ◽  
M. C. Supnet ◽  
M. L. Longo ◽  
B. R. Fan ◽  
...  

Antioxidant delivery may be targeted toward the alveolar epithelium by encapsulating superoxide dismutase (SOD) and catalase in liposomes made from pulmonary surfactant. We studied whether antioxidant-surfactant liposomes increase cellular antioxidant activity in alveolar type II cells and whether this effect is influenced by the presence of surfactant protein A (SP-A). Cu,Zn SOD and catalase were encapsulated in liposomes made from synthetic phospholipids with or without 5% SP-A or from natural cow surfactant. Alveolar type II cells from adult rats were preincubated for 20 h, and liposome mixtures were added for 24 h, followed by measurement of cellular SOD and catalase activities (U/mg DNA). Antioxidant-surfactant liposomes increased alveolar type II cell antioxidant activity sharply. Uptake of SOD/catalase from liposomes with synthetic phospholipids and SP-A was twice that from liposomes without SP-A and did not further improve in the presence of SP-B and -C. Encapsulation of antioxidants diminished the surface activity of the surfactant liposomes, but this feature was absent in the presence of SP-A. These data suggest that: 1) antioxidant-surfactant liposomes augment alveolar type II cell antioxidant activity, 2) liposomal uptake is facilitated by the presence of SP-A, and 3) inhibition of surface activity of surfactant by encapsulated antioxidants can be reversed by SP-A.


1986 ◽  
Vol 250 (2) ◽  
pp. C222-C227 ◽  
Author(s):  
G. R. Cott ◽  
K. Sugahara ◽  
R. J. Mason

The active transcellular transport of electrolytes across the alveolar epithelium probably plays an important role in alveolar fluid homeostasis by helping to maintain the alveolus relatively free of fluid. To better understand the factors regulating active ion transport across alveolar epithelial cells, we examined the effect of a number of pharmacologically active agents on the bioelectric properties of alveolar type II cells in primary culture. Alveolar type II cells were isolated from adult male rats and cultured on collagen-coated Millipore filters for 6-14 days. The bioelectric properties of these monolayers were determined in Ussing-type chambers. The addition of 10(-3) M 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) increased the short-circuit current (Isc) from 2.9 +/- 0.75 to 6.9 +/- 0.73 microA/cm2 (means +/- SE; n = 8) and decreased the transepithelial resistance. Cholera toxin, 3-isobutyl-1-methylxanthine, and terbutaline sulfate produced similar increases in Isc and decreases in resistance. The Isc stimulated by 8-BrcAMP was Na but not Cl dependent and could be blocked by amiloride but not by furosemide. Thus 8-BrcAMP and agents that increase intracellular cAMP can stimulate a Na-dependent net active ion transport across alveolar type II cell monolayers. Similar regulatory mechanisms may be involved in controlling solute and fluid movement across the alveolar epithelium in vivo.


Sign in / Sign up

Export Citation Format

Share Document