Spectral Dependence on a Parameter

Author(s):  
Manfred Möller ◽  
Vyacheslav Pivovarchik
2008 ◽  
Vol 22 (12) ◽  
pp. 1265-1272 ◽  
Author(s):  
S. A. SIDDIQI ◽  
M. A. GHAURI ◽  
M. J. S. BAIG

Zinc manganese phosphate glasses ( ZnO - MnO - P 2 O 5) of different compositions are synthesized. The optical band gaps are measured in the UV-VIS region. Photoconduction measurements are also made in the spectral energy range 1.5–6.2 eV. At various applied electric fields, the values of the energy band gaps have been deduced from the spectral dependence curves. Furthermore, the band gaps at zero applied voltage were also obtained for different compositions. The charge transport mechanism in these glasses is studied under the Mott's model.


1997 ◽  
Vol 56 (7) ◽  
pp. 4176-4185 ◽  
Author(s):  
V. M. Farztdinov ◽  
A. L. Dobryakov ◽  
V. S. Letokhov ◽  
Yu. E. Lozovik ◽  
Yu. A. Matveets ◽  
...  

ACS Nano ◽  
2011 ◽  
Vol 5 (6) ◽  
pp. 5045-5055 ◽  
Author(s):  
Lazaro A. Padilha ◽  
István Robel ◽  
Doh C. Lee ◽  
Prashant Nagpal ◽  
Jeffrey M. Pietryga ◽  
...  

2012 ◽  
Vol 41 (8) ◽  
pp. 489-490
Author(s):  
M. D. Malinkovich ◽  
Yu. N. Parkhomenko ◽  
M. L. Shupegin ◽  
A. P. Bliev ◽  
A. V. Gritsenko

2015 ◽  
Vol 15 (23) ◽  
pp. 13453-13473 ◽  
Author(s):  
S. P. Burton ◽  
J. W. Hair ◽  
M. Kahnert ◽  
R. A. Ferrare ◽  
C. A. Hostetler ◽  
...  

Abstract. Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.


1979 ◽  
Vol 10 (4) ◽  
pp. 325-328 ◽  
Author(s):  
V. S. Zakharenko ◽  
A. E. Cherkashin ◽  
A. M. Volodin ◽  
N. P. Keier

Sign in / Sign up

Export Citation Format

Share Document