Application of 3D VAR Kalman Filter in a Three-Dimensional Subsurface Contaminant Transport Model for a Continuous Pollutant Source

Author(s):  
Shoou-Yuh Chang ◽  
Anup Saha
2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xingwei Wang ◽  
Jiajun Chen ◽  
Hao Wang ◽  
Jianfei Liu

Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1480
Author(s):  
Xingwei Liu ◽  
Qiulan Zhang ◽  
Tangpei Cheng

To overcome the large time and memory consumption problems in large-scale high-resolution contaminant transport simulations, an efficient approach was presented to parallelize the modular three-dimensional transport model for multi-species (MT3DMS) (University of Alabama, Tuscaloosa, AL, USA) program on J adaptive structured meshes applications infrastructures (JASMIN). In this approach, a domain decomposition method and a stencil-based method were used to accomplish parallel implementation, while a ghost cell strategy was used for communication. The MODFLOW-MT3DMS coupling mode was optimized to achieve the parallel coupling of flow and contaminant transport. Five types of models were used to verify the correctness and test the parallel performance of the method. The developed parallel program JMT3D (China University of Geosciences (Beijing), Beijing, China) can increase the speed by up to 31.7 times, save memory consumption by 96% with 46 processors, and ensure that the solution accuracy and convergence do not decrease as the number of domains increases. The BiCGSTAB (Bi-conjugate gradient variant algorithm) method required the least amount of time and achieved high speedup in most cases. Coupling the flow and contaminant transport further improved the efficiency of the simulations, with a 33.45 times higher speedup achieved on 46 processors. The AMG (algebraic multigrid) method achieved a good scalability, with an efficiency above 100% on hundreds of processors for the simulation of tens of millions of cells.


1999 ◽  
Author(s):  
Bohdan Cybyk ◽  
Jay Boris ◽  
Theodore Young, Jr. ◽  
Charles Lind ◽  
Alexandra Landsberg

Sign in / Sign up

Export Citation Format

Share Document