scholarly journals Accelerating Contaminant Transport Simulation in MT3DMS Using JASMIN-Based Parallel Computing

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1480
Author(s):  
Xingwei Liu ◽  
Qiulan Zhang ◽  
Tangpei Cheng

To overcome the large time and memory consumption problems in large-scale high-resolution contaminant transport simulations, an efficient approach was presented to parallelize the modular three-dimensional transport model for multi-species (MT3DMS) (University of Alabama, Tuscaloosa, AL, USA) program on J adaptive structured meshes applications infrastructures (JASMIN). In this approach, a domain decomposition method and a stencil-based method were used to accomplish parallel implementation, while a ghost cell strategy was used for communication. The MODFLOW-MT3DMS coupling mode was optimized to achieve the parallel coupling of flow and contaminant transport. Five types of models were used to verify the correctness and test the parallel performance of the method. The developed parallel program JMT3D (China University of Geosciences (Beijing), Beijing, China) can increase the speed by up to 31.7 times, save memory consumption by 96% with 46 processors, and ensure that the solution accuracy and convergence do not decrease as the number of domains increases. The BiCGSTAB (Bi-conjugate gradient variant algorithm) method required the least amount of time and achieved high speedup in most cases. Coupling the flow and contaminant transport further improved the efficiency of the simulations, with a 33.45 times higher speedup achieved on 46 processors. The AMG (algebraic multigrid) method achieved a good scalability, with an efficiency above 100% on hundreds of processors for the simulation of tens of millions of cells.

2011 ◽  
Vol 11 (1) ◽  
pp. 363-373 ◽  
Author(s):  
H. Bencherif ◽  
L. El Amraoui ◽  
G. Kirgis ◽  
J. Leclair De Bellevue ◽  
A. Hauchecorne ◽  
...  

Abstract. This paper reports on an increase of ozone event observed over Kerguelen (49.4° S, 70.3° E) in relationship with large-scale isentropic transport. This is evidenced by ground-based observations (co-localised radiosonde and SAOZ experiments) together with satellite global observations (Aura/MLS) assimilated into MOCAGE, a Méteo-France model. The study is based on the analyses of the first ozonesonde experiment never recorded at the Kerguelen site within the framework of a French campaign called ROCK that took place from April to August 2008. Comparisons and interpretations of the observed event are supported by co-localised SAOZ observations, by global mapping of tracers (O3, N2O and columns of O3) from Aura/MLS and Aura/OMI experiments, and by model simulations of Ertel Potential Vorticity initialised by the ECMWF (European Centre for Medium-Range Weather Forecasts) data reanalyses. Satellite and ground-based observational data revealed a consistent increase of ozone in the local stratosphere by mid-April 2008. Additionally, Ozone (O3) and nitrous oxide (N2O) profiles obtained during January–May 2008 using the Microwave Limb Sounder (MLS) aboard the Aura satellite are assimilated into MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle), a global three-dimensional chemistry transport model of Météo-France. The assimilated total O3 values are consistent with SAOZ ground observations (within ±5%), and isentropic distributions of O3 match well with maps of advected potential vorticity (APV) derived from the MIMOSA model, a high-resolution advection transport model, and from the ECMWF reanalysis. The event studied seems to be related to the isentropic transport of air masses that took place simultaneously in the lower- and middle-stratosphere, respectively from the polar region and from the tropics to the mid-latitudes. In fact, the ozone increase observed by mid April 2008 resulted simultaneously: (1) from an equator-ward departure of polar air masses characterised with a high-ozone layer in the lower stratosphere (near the 475 K isentropic level), and (2) from a reverse isentropic transport from the tropics to mid- and high-latitudes in the upper stratosphere (nearby the 700 K level). The increase of ozone observed over Kerguelen from the 16-April ozonesonde profile is thus attributed to a concomitant isentropic transport of ozone in two stratospheric layers: the tropical air moving southward and reaching over Kerguelen in the upper stratosphere, and the polar air passing over the same area but in the lower stratosphere.


2009 ◽  
Vol 9 (5) ◽  
pp. 18511-18543 ◽  
Author(s):  
J. Aschmann ◽  
B. M. Sinnhuber ◽  
E. L. Atlas ◽  
S. M. Schauffler

Abstract. The transport of very short-lived substances into the tropical upper troposphere and lower stratosphere is investigated by a three-dimensional chemical transport model using archived convective updraft mass fluxes (or detrainment rates) from the European Centre for Medium-Range Weather Forecast's ERA-Interim reanalysis. Large-scale vertical velocities are calculated from diabatic heating rates. With this approach we explicitly model the large scale subsidence in the tropical troposphere with convection taking place in fast and isolated updraft events. The model calculations agree generally well with observations of bromoform and methyl iodide from aircraft campaigns and with ozone and water vapor from sonde and satellite observations. Using a simplified treatment of dehydration and bromine product gas washout we give a range of 1.6 to 3 ppt for the contribution of bromoform to stratospheric bromine, assuming a uniform source in the boundary layer of 1 ppt. We show that the most effective region for VSLS transport into the stratosphere is the West Pacific, accounting for about 55% of the bromine from bromoform transported into the stratosphere under the supposition of a uniformly distributed source.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xingwei Wang ◽  
Jiajun Chen ◽  
Hao Wang ◽  
Jianfei Liu

Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.


2009 ◽  
Vol 9 (3) ◽  
pp. 13889-13916 ◽  
Author(s):  
A. Voulgarakis ◽  
O. Wild ◽  
N. H. Savage ◽  
G. D. Carver ◽  
J. A. Pyle

Abstract. We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity on regional scales.


Author(s):  
В.О. Подрыга ◽  
С.В. Поляков

Статья посвящена параллельной реализации многомасштабного подхода для расчета течений газов в микроканалах сложных технических систем. Многомасштабный подход сочетает решения уравнений квазигазодинамики (КГД) и молекулярной динамики (МД). Представлена параллельная реализация подхода, основанная на методах расщепления по физическим процессам и разделения областей. Реализация ориентирована на использование вычислительных систем с центральной и гибридной архитектурами. Разработанные параллельные алгоритмы обладают хорошей масштабируемостью. Полученные результаты подтвердили эффективность разработанного подхода. С его помощью методами МД были получены основные коэффициентные зависимости для КГД-системы, произведен расчет трехмерного течения. This paper is devoted to a parallel implementation of multiscale approach to the numerical study of gas flows in microchannels of complex technical systems. The multiscale approach combines the solutions of quasigasdynamic (QGD) equations and molecular dynamics (MD) equations. The proposed parallel implementation of this approach is based on the method of splitting into physical processes and the domain decomposition method. The implementation is oriented for using computer systems with central and hybrid architectures. The developed parallel algorithms show a good scalability. The obtained results confirm the efficiency of the approach under consideration. This approach was used to find the basic coefficient dependences for the QGD system by MD methods and to study a three-dimensional gas flow numerically.


2019 ◽  
Vol 9 (24) ◽  
pp. 5437
Author(s):  
Lei Xiao ◽  
Guoxiang Yang ◽  
Kunyang Zhao ◽  
Gang Mei

In numerical modeling, mesh quality is one of the decisive factors that strongly affects the accuracy of calculations and the convergence of iterations. To improve mesh quality, the Laplacian mesh smoothing method, which repositions nodes to the barycenter of adjacent nodes without changing the mesh topology, has been widely used. However, smoothing a large-scale three dimensional mesh is quite computationally expensive, and few studies have focused on accelerating the Laplacian mesh smoothing method by utilizing the graphics processing unit (GPU). This paper presents a GPU-accelerated parallel algorithm for Laplacian smoothing in three dimensions by considering the influence of different data layouts and iteration forms. To evaluate the efficiency of the GPU implementation, the parallel solution is compared with the original serial solution. Experimental results show that our parallel implementation is up to 46 times faster than the serial version.


1999 ◽  
Vol 61 (3) ◽  
pp. 367-389 ◽  
Author(s):  
J. WANG ◽  
D. KONDRASHOV ◽  
P. C. LIEWER ◽  
S. R. KARMESIN

We describe a new parallel, non-orthogonal-grid, three-dimensional electromagnetic particle-in-cell (EMPIC) code based on a finite-volume formulation. This code uses a logically Cartesian grid of deformable hexahedral cells, a discrete surface integral (DSI) algorithm to calculate the electromagnetic field, and a hybrid logical–physical space algorithm to push particles. We investigate the numerical instability of the DSI algorithm for non-orthogonal grids, analyse the accuracy for EMPIC simulations on non-orthogonal grids, and present performance benchmarks of this code on a parallel supercomputer. While the hybrid particle push algorithm has a second-order accuracy in space, the accuracy of the DSI field solve algorithm is between first and second order for non-orthogonal grids. The parallel implementation of this code, which is almost identical to that of a Cartesian-grid EMPIC code using domain decomposition, achieved a high parallel efficiency of over 96% for large-scale simulations.


2010 ◽  
Vol 10 (7) ◽  
pp. 17727-17751
Author(s):  
H. Bencherif ◽  
L. El Amraoui ◽  
G. Kirgis ◽  
J. Leclair De Bellevue ◽  
A. Hauchecorne ◽  
...  

Abstract. This paper reports on an increase of ozone event observed over Kerguelen (49.4° S, 70.3° E) in relationship with large-scale isentropic transport. It is evidenced from ground-based observations, together with satellite global observations and assimilated fields. The study is based on the analyses of the first ozonesonde experiment never recorded at the Kerguelen site in the framework of a French campaign called ROCK that took place from April to August 2008. Comparisons and interpretations of the observed event are supported by co-localised SAOZ observations, by global mapping of tracers (O3, N2O and columns of O3) from Aura/MLS and Aura/OMI experiments, and by model simulations of Ertel Potential Vorticity initialised by ECMWF (European Centre for Medium-Range Weather Forecasts) data reanalyses. Satellite and ground-based observational data revealed a consistent increase of ozone in the local stratosphere by mid-April 2008. Additionally, Ozone (O3) and nitrous oxide (N2O) profiles obtained during January–May 2008 by the Microwave Lamb Sounder (MLS) aboard the Aura satellite are assimilated into MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle), a global three-dimensional chemistry transport model of Météo-France. The assimilated total O3 values are consistent with SAOZ ground observations (within ±5%), and isentropic distributions of O3 are matching well with maps of advected potential vorticity (APV) derived from the MIMOSA model, a high-resolution advection transport model, and from ECMWF reanalysis. The studied event seems to be related to isentropic transport of air masses that took place simultaneously in the lower- and middle-stratosphere, respectively from the polar region and from tropics to the mid-latitudes. In fact, the studied ozone increase by mid April 2008 results simultaneously: (1) from an equator-ward departure of polar air masses characterised with a high-ozone layer in the lower stratosphere (nearby the 475 K isentropic level), and (2) from a reverse isentropic transport from tropics to mid- and high-latitudes in the upper stratosphere (nearby the 700 K level). The increase of ozone observed over Kerguelen from the 16-April ozonesonde profile is then attributed to a concomitant isentropic transport of ozone in two stratospheric layers: the tropical air moving southward and reaches over Kerguelen in the upper stratosphere, and the polar air passing over the same area but in the lower stratosphere.


Sign in / Sign up

Export Citation Format

Share Document