New adaptive Barzilai--Borwein step size and its application in solving large-scale optimization problems

2019 ◽  
Vol 61 ◽  
pp. 76
Author(s):  
Ting Li ◽  
Zhong Wan
2020 ◽  
Vol 34 (04) ◽  
pp. 5503-5510
Author(s):  
Zhaolin Ren ◽  
Zhengyuan Zhou ◽  
Linhai Qiu ◽  
Ajay Deshpande ◽  
Jayant Kalagnanam

In large-scale optimization problems, distributed asynchronous stochastic gradient descent (DASGD) is a commonly used algorithm. In most applications, there are often a large number of computing nodes asynchronously computing gradient information. As such, the gradient information received at a given iteration is often stale. In the presence of such delays, which can be unbounded, the convergence of DASGD is uncertain. The contribution of this paper is twofold. First, we propose a delay-adaptive variant of DASGD where we adjust each iteration's step-size based on the size of the delay, and prove asymptotic convergence of the algorithm on variationally coherent stochastic problems, a class of functions which properly includes convex, quasi-convex and star-convex functions. Second, we extend the convergence results of standard DASGD, used usually for problems with bounded domains, to problems with unbounded domains. In this way, we extend the frontier of theoretical guarantees for distributed asynchronous optimization, and provide new insights for practitioners working on large-scale optimization problems.


2018 ◽  
Vol 61 (1) ◽  
pp. 76-98 ◽  
Author(s):  
TING LI ◽  
ZHONG WAN

We propose a new adaptive and composite Barzilai–Borwein (BB) step size by integrating the advantages of such existing step sizes. Particularly, the proposed step size is an optimal weighted mean of two classical BB step sizes and the weights are updated at each iteration in accordance with the quality of the classical BB step sizes. Combined with the steepest descent direction, the adaptive and composite BB step size is incorporated into the development of an algorithm such that it is efficient to solve large-scale optimization problems. We prove that the developed algorithm is globally convergent and it R-linearly converges when applied to solve strictly convex quadratic minimization problems. Compared with the state-of-the-art algorithms available in the literature, the proposed step size is more efficient in solving ill-posed or large-scale benchmark test problems.


Author(s):  
Jie Guo ◽  
Zhong Wan

A new spectral three-term conjugate gradient algorithm in virtue of the Quasi-Newton equation is developed for solving large-scale unconstrained optimization problems. It is proved that the search directions in this algorithm always satisfy a sufficiently descent condition independent of any line search. Global convergence is established for general objective functions if the strong Wolfe line search is used. Numerical experiments are employed to show its high numerical performance in solving large-scale optimization problems. Particularly, the developed algorithm is implemented to solve the 100 benchmark test problems from CUTE with different sizes from 1000 to 10,000, in comparison with some similar ones in the literature. The numerical results demonstrate that our algorithm outperforms the state-of-the-art ones in terms of less CPU time, less number of iteration or less number of function evaluation.


2017 ◽  
Vol 59 ◽  
pp. 340-362 ◽  
Author(s):  
Prabhujit Mohapatra ◽  
Kedar Nath Das ◽  
Santanu Roy

Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 521 ◽  
Author(s):  
Fanrong Kong ◽  
Jianhui Jiang ◽  
Yan Huang

As a powerful tool in optimization, particle swarm optimizers have been widely applied to many different optimization areas and drawn much attention. However, for large-scale optimization problems, the algorithms exhibit poor ability to pursue satisfactory results due to the lack of ability in diversity maintenance. In this paper, an adaptive multi-swarm particle swarm optimizer is proposed, which adaptively divides a swarm into several sub-swarms and a competition mechanism is employed to select exemplars. In this way, on the one hand, the diversity of exemplars increases, which helps the swarm preserve the exploitation ability. On the other hand, the number of sub-swarms adaptively changes from a large value to a small value, which helps the algorithm make a suitable balance between exploitation and exploration. By employing several peer algorithms, we conducted comparisons to validate the proposed algorithm on a large-scale optimization benchmark suite of CEC 2013. The experiments results demonstrate the proposed algorithm is effective and competitive to address large-scale optimization problems.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 414 ◽  
Author(s):  
Weian Guo ◽  
Lei Zhu ◽  
Lei Wang ◽  
Qidi Wu ◽  
Fanrong Kong

Diversity maintenance is crucial for particle swarm optimizer’s (PSO) performance. However, the update mechanism for particles in the conventional PSO is poor in the performance of diversity maintenance, which usually results in a premature convergence or a stagnation of exploration in the searching space. To help particle swarm optimization enhance the ability in diversity maintenance, many works have proposed to adjust the distances among particles. However, such operators will result in a situation where the diversity maintenance and fitness evaluation are conducted in the same distance-based space. Therefore, it also brings a new challenge in trade-off between convergence speed and diversity preserving. In this paper, a novel PSO is proposed that employs competitive strategy and entropy measurement to manage convergence operator and diversity maintenance respectively. The proposed algorithm was applied to the large-scale optimization benchmark suite on CEC 2013 and the results demonstrate the proposed algorithm is feasible and competitive to address large scale optimization problems.


Sign in / Sign up

Export Citation Format

Share Document