Singular Integrals and Potentials in Grand Lebesgue Spaces

Author(s):  
Vakhtang Kokilashvili ◽  
Alexander Meskhi ◽  
Humberto Rafeiro ◽  
Stefan Samko
2016 ◽  
Vol 19 (3) ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Mieczysław Mastyło ◽  
Alexander Meskhi

AbstractThe boundedness of multi(sub)linear Hardy–Littlewood maximal, Calderón–Zygmund and fractional integral operators defined on metric measure spaces is established in weighted grand Lebesgue spaces. In particular, we derive the one-weight inequality for maximal and singular integrals under the Muckenhoupt type conditions, weighted Sobolev type theorem and trace type inequality for fractional integrals.


2021 ◽  
Vol 11 (1) ◽  
pp. 72-95
Author(s):  
Xiao Zhang ◽  
Feng Liu ◽  
Huiyun Zhang

Abstract This paper is devoted to investigating the boundedness, continuity and compactness for variation operators of singular integrals and their commutators on Morrey spaces and Besov spaces. More precisely, we establish the boundedness for the variation operators of singular integrals with rough kernels Ω ∈ Lq (S n−1) (q > 1) and their commutators on Morrey spaces as well as the compactness for the above commutators on Lebesgue spaces and Morrey spaces. In addition, we present a criterion on the boundedness and continuity for a class of variation operators of singular integrals and their commutators on Besov spaces. As applications, we obtain the boundedness and continuity for the variation operators of Hilbert transform, Hermit Riesz transform, Riesz transforms and rough singular integrals as well as their commutators on Besov spaces.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiao Zhang ◽  
Feng Liu

Abstract In this note we study the maximal singular integral operators associated with a homogeneous mapping with rough kernels as well as the corresponding maximal operators. The boundedness and continuity on the Lebesgue spaces, Triebel–Lizorkin spaces, and Besov spaces are established for the above operators with rough kernels in $H^{1}({\mathrm{S}}^{n-1})$ H 1 ( S n − 1 ) , which complement some recent developments related to rough maximal singular integrals.


2020 ◽  
Vol 23 (5) ◽  
pp. 1452-1471
Author(s):  
Vakhtang Kokilashvili ◽  
Alexander Meskhi

Abstract D. Adams type trace inequalities for multiple fractional integral operators in grand Lebesgue spaces with mixed norms are established. Operators under consideration contain multiple fractional integrals defined on the product of quasi-metric measure spaces, and one-sided multiple potentials. In the case when we deal with operators defined on bounded sets, the established conditions are simultaneously necessary and sufficient for appropriate trace inequalities. The derived results are new even for multiple Riesz potential operators defined on the product of Euclidean spaces.


2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Nina Danelia ◽  
Vakhtang Kokilashvili

AbstractIn this paper we establish direct and inverse theorems on approximation by trigonometric polynomials for the functions of the closure of the variable exponent Lebesgue space in the variable exponent grand Lebesgue space.


Sign in / Sign up

Export Citation Format

Share Document