scholarly journals Sequential Generation of Structured Arrays and Its Deductive Verification

Author(s):  
Richard Genestier ◽  
Alain Giorgetti ◽  
Guillaume Petiot
Climate ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 71
Author(s):  
Edgard Gonzales ◽  
Eusebio Ingol

In 2017, extreme rainfall events occurred in the northern portion of Peru, causing nearly 100,000 victims, according to the National Emergency Operations Center (COEN). This climatic event was attributed to the occurrence of the El Niño Southern Oscillation (ENSO). Therefore, the main objective of this study was to determine and differentiate between the occurrence of canonical ENSO, with a new type of ENSO called “El Niño Costero” (Coastal El Niño). The polynomial equation method was used to analyze the data from the different types of existing ocean indices to determine the occurrence of ENSO. It was observed that the anomalies of sea surface temperature (SST) 2.5 °C (January 2016) generated the “Modoki El Niño” and that the anomaly of SST −0.3 °C (January 2017) generated the “Modoki La Niña”; this sequential generation generated El Niño Costero. This new knowledge about the sui generis origin of El Niño Costero, based on the observations of this analysis, will allow us to identify and obtain important information regarding the occurrence of this event. A new oceanic index called the Pacific Regional Equatorial Index (PREI) was proposed to follow the periodic evolution and forecast with greater precision a new catastrophic event related to the occurrence of El Niño Costero and to implement prevention programs.


Author(s):  
Vladimir Ivanovich Shelekhov ◽  

Deductive verification of the classical J.Williams heapsort algorithm for objects of an arbitrary type was conducted. In order to simplify verification, non-trivial transformations, replacing pointer arithmetic operators by an array element constructs, were applied. The program was translated to the predicate programming language. Deductive verification of the program in the tools Why3 and Coq appears to be complicated and time consuming.


Author(s):  
D. Istrati ◽  
Y. Pilnyak ◽  
J. C. Loredo ◽  
C. Antón ◽  
N. Somaschi ◽  
...  

1966 ◽  
Vol 92 (4) ◽  
pp. 162-165
Author(s):  
Te ven Chow ◽  
S. Ramaseshan

2019 ◽  
Vol 92 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Matija Sambol ◽  
Katja Ester ◽  
Antonija Husak ◽  
Đani Škalamera ◽  
Ivo Piantanida ◽  
...  

New bifunctional quinone methide (QM) precursors, bisphenols 2a–2e, and monofunctional QM precursor 7 were synthesized. Upon treatment with fluoride, desilylation triggers formation of reactive intermediates, QMs, which was demonstrated by trapping QM with azide or methanol. The ability of QMs to alkylate and cross-link DNA was assayed by investigation of the effects of QMs to DNA denaturing, but without conclusive evidence. Furthermore, treatment of a plasmid DNA with compounds 2a–2e and KF, followed by the analysis by alkaline denaturing gel electrophoresis, did not provide evidence for the DNA cross-linking. MTT test performed on two human cancer cell lines (MCF7 breast adenocarcinoma and SUM159 pleomorphic breast carcinoma), with and without fluoride, indicated that 2a–2e or the corresponding QMs did not exhibit cytotoxic activity, in line with the lack of ability to cross-link DNA. The lack of reactivity with DNA and biological activity were explained by sequential formation of QMs where bifunctional cytotoxic reagent is probably never produced. Instead, the sequential generation of monofunctional QM followed by a faster hydrolysis leads to the destruction of biologically active reagent. The findings described here are particularly important for the rational design of new generation of QM precursor molecules that will attain desirable DNA reactivity and cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document