scholarly journals Probabilistic Query Answering in the Bayesian Description Logic $$\mathcal {BE{}L}$$

Author(s):  
İsmail İlkan Ceylan ◽  
Rafael Peñaloza
2021 ◽  
Vol 178 (4) ◽  
pp. 315-346
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

We present a KE-tableau-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic 𝒟ℒ〈4LQSR,×〉(D) (𝒟ℒD4,×, for short). Our application solves the main TBox and ABox reasoning problems for 𝒟ℒD4,×. In particular, it solves the consistency and the classification problems for 𝒟ℒD4,×-knowledge bases represented in set-theoretic terms, and a generalization of the Conjunctive Query Answering problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and improves a previous version, is implemented in C++. It supports 𝒟ℒD4,×-knowledge bases serialized in the OWL/XML format and it admits also rules expressed in SWRL (Semantic Web Rule Language).


2021 ◽  
Vol 70 ◽  
pp. 1335-1371
Author(s):  
Giuseppe De Giacomo ◽  
Xavier Oriol ◽  
Riccardo Rosati ◽  
Domenico Fabio Savo

In this paper we study instance-level update in DL-LiteA , a well-known description logic that influenced the OWL 2 QL standard. Instance-level update regards insertions and deletions in the ABox of an ontology. In particular we focus on formula-based approaches to instance-level update. We show that DL-LiteA , which is well-known for enjoying first-order rewritability of query answering, enjoys a first-order rewritability property also for instance-level update. That is, every update can be reformulated into a set of insertion and deletion instructions computable through a non-recursive Datalog program with negation. Such a program is readily translatable into a first-order query over the ABox considered as a database, and hence into SQL. By exploiting this result, we implement an update component for DL-LiteA-based systems and perform some experiments showing that the approach works in practice.


Author(s):  
Camille Bourgaux ◽  
Ana Ozaki ◽  
Rafael Penaloza ◽  
Livia Predoiu

We address the problem of handling provenance information in ELHr ontologies. We consider a setting recently introduced for ontology-based data access, based on semirings and extending classical data provenance, in which ontology axioms are annotated with provenance tokens. A consequence inherits the provenance of the axioms involved in deriving it, yielding a provenance polynomial as an annotation. We analyse the semantics for the ELHr case and show that the presence of conjunctions poses various difficulties for handling provenance, some of which are mitigated by assuming multiplicative idempotency of the semiring. Under this assumption, we study three problems: ontology completion with provenance, computing the set of relevant axioms for a consequence, and query answering.


2008 ◽  
Vol 31 ◽  
pp. 157-204 ◽  
Author(s):  
B. Glimm ◽  
C. Lutz ◽  
I. Horrocks ◽  
U. Sattler

Conjunctive queries play an important role as an expressive query language for Description Logics (DLs). Although modern DLs usually provide for transitive roles, conjunctive query answering over DL knowledge bases is only poorly understood if transitive roles are admitted in the query. In this paper, we consider unions of conjunctive queries over knowledge bases formulated in the prominent DL SHIQ and allow transitive roles in both the query and the knowledge base. We show decidability of query answering in this setting and establish two tight complexity bounds: regarding combined complexity, we prove that there is a deterministic algorithm for query answering that needs time single exponential in the size of the KB and double exponential in the size of the query, which is optimal. Regarding data complexity, we prove containment in co-NP.


Author(s):  
GABRIELLA PASI ◽  
RAFAEL PEÑALOZA

Abstract A prominent problem in knowledge representation is how to answer queries taking into account also the implicit consequences of an ontology representing domain knowledge. While this problem has been widely studied within the realm of description logic ontologies, it has been surprisingly neglected within the context of vague or imprecise knowledge, particularly from the point of view of mathematical fuzzy logic. In this paper, we study the problem of answering conjunctive queries and threshold queries w.r.t. ontologies in fuzzy DL-Lite. Specifically, we show through a rewriting approach that threshold query answering w.r.t. consistent ontologies remains in ${AC}^{0}$ in data complexity, but that conjunctive query answering is highly dependent on the selected triangular norm, which has an impact on the underlying semantics. For the idempotent Gödel t-norm, we provide an effective method based on a reduction to the classical case.


10.29007/npd4 ◽  
2018 ◽  
Author(s):  
Gopalakrishnan Krishnasamy Sivaprakasam ◽  
Adrienne Raglin ◽  
Douglas Summers-Stay ◽  
Giora Slutzki

In this paper we study Secrecy-Preserving Query Answering problem underthe OpenWorld Assumption (OWA) for Prob-EL>0;=1 Knowledge Bases(KBs). We have designed a tableau procedure to compute a semi model Mover the given KB which eventually is equivalent to a probabilistic modelto KB. Given a secrecy set S, which is a finite set of assertions, wecompute a function E, called an envelope of S, which assigns a set E() ofassertions to each world in the semi modal M. E provides logical protection to the secrecy set S against the reasoning of a querying agent. Once the semi model M and an envelope E are computed, we define the secrecy-preserving semi model ME.Based on the information available in ME, assertional queries with probabilisticoperators can be answered eciently while preserving secrecy. Tothe best of our knowledge, this work is first one studying secrecy-preservingreasoning in description logic augmented with probabilistic operators. Whenthe querying agent asks a query q, the reasoner answers “Yes” if informationabout q is available in ME; otherwise, the reasoner answers “Unknown”. Beingable to answer “Unknown” plays a key role in protecting secrecy underOWA. Since we are not computing all the consequences of the knowledgebase, answers to the queries based on just secrecy-preserving semi modelME could be erroneous. To fix this problem, we further augment our algorithmsby providing recursive query decomposition algorithm to make thequery answering procedure foolproof.1


Sign in / Sign up

Export Citation Format

Share Document