Knowledge Base Completion Using Matrix Factorization

Author(s):  
Wenqiang He ◽  
Yansong Feng ◽  
Lei Zou ◽  
Dongyan Zhao
Author(s):  
Prachi Jain ◽  
Shikhar Murty ◽  
Mausam . ◽  
Soumen Chakrabarti

This paper analyzes the varied performance of Matrix Factorization (MF) on the related tasks of relation extraction and knowledge-base completion, which have been unified recently into a single framework of knowledge-base inference (KBI) [Toutanova et al., 2015]. We first propose a new evaluation protocol that makes comparisons between MF and Tensor Factorization (TF) models fair. We find that this results in a steep drop in MF performance. Our analysis attributes this to the high out-of-vocabulary (OOV) rate of entity pairs in test folds of commonly-used datasets. To alleviate this issue, we propose three extensions to MF. Our best model is a TF-augmented MF model. This hybrid model is robust and obtains strong results across various KBI datasets.


Author(s):  
Ruobing Xie ◽  
Xingchi Yuan ◽  
Zhiyuan Liu ◽  
Maosong Sun

Sememes are defined as the minimum semantic units of human languages. People have manually annotated lexical sememes for words and form linguistic knowledge bases. However, manual construction is time-consuming and labor-intensive, with significant annotation inconsistency and noise. In this paper, we for the first time explore to automatically predict lexical sememes based on semantic meanings of words encoded by word embeddings. Moreover, we apply matrix factorization to learn semantic relations between sememes and words. In experiments, we take a real-world sememe knowledge base HowNet for training and evaluation, and the results reveal the effectiveness of our method for lexical sememe prediction. Our method will be of great use for annotation verification of existing noisy sememe knowledge bases and annotation suggestion of new words and phrases.


2017 ◽  
Vol 20 (1) ◽  
pp. 208-220
Author(s):  
J. F. Coll
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document