Tree-Based Metric Learning for Distance Computation in Data Mining

Author(s):  
Ming Yan ◽  
Yan Zhang ◽  
Hongzhi Wang
Author(s):  
Han-Jia Ye ◽  
De-Chuan Zhan ◽  
Xue-Min Si ◽  
Yuan Jiang

Mahalanobis distance metric takes feature weights and correlation into account in the distance computation, which can improve the performance of many similarity/dissimilarity based methods, such as kNN. Most existing distance metric learning methods obtain metric based on the raw features and side information but neglect the reliability of them. Noises or disturbances on instances will make changes on their relationships, so as to affect the learned metric.In this paper, we claim that considering disturbance of instances may help the distance metric learning approach get a robust metric, and propose the Distance metRIc learning Facilitated by disTurbances (DRIFT) approach. In DRIFT, the noise or the disturbance of each instance is learned. Therefore, the distance between each pair of (noisy) instances can be better estimated, which facilitates side information utilization and metric learning.Experiments on prediction and visualization clearly indicate the effectiveness of the proposed approach.


2001 ◽  
Vol 01 (02) ◽  
pp. 363-386
Author(s):  
WLADIMIR RODRIGUEZ ◽  
MARK LAST ◽  
ABRAHAM KANDEL ◽  
HORST BUNKE

In this paper, a new, geometric approach to pattern identification in data mining is presented. It is based on applying string edit distance computation to measuring the similarity between multi-dimensional curves. The string edit distance computation is extended to allow the possibility of using strings, where each element is a vector rather than just a symbol. We discuss an approach for representing 3D-curves using the curvature and the tension as their symbolic representation. This transformation preserves all the information contained in the original 3D-curve. We validate this approach through experiments using synthetic and digitalized data. In particular, the proposed approach is suitable to measure the similarity of 3D-curves invariant under translation, rotation, and scaling. It also can be applied for partial curve matching.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2010 ◽  
Vol 24 (2) ◽  
pp. 112-119 ◽  
Author(s):  
F. Riganello ◽  
A. Candelieri ◽  
M. Quintieri ◽  
G. Dolce

The purpose of the study was to identify significant changes in heart rate variability (an emerging descriptor of emotional conditions; HRV) concomitant to complex auditory stimuli with emotional value (music). In healthy controls, traumatic brain injured (TBI) patients, and subjects in the vegetative state (VS) the heart beat was continuously recorded while the subjects were passively listening to each of four music samples of different authorship. The heart rate (parametric and nonparametric) frequency spectra were computed and the spectra descriptors were processed by data-mining procedures. Data-mining sorted the nu_lf (normalized parameter unit of the spectrum low frequency range) as the significant descriptor by which the healthy controls, TBI patients, and VS subjects’ HRV responses to music could be clustered in classes matching those defined by the controls and TBI patients’ subjective reports. These findings promote the potential for HRV to reflect complex emotional stimuli and suggest that residual emotional reactions continue to occur in VS. HRV descriptors and data-mining appear applicable in brain function research in the absence of consciousness.


PsycCRITIQUES ◽  
2016 ◽  
Vol 61 (51) ◽  
Author(s):  
Daniel Keyes

Sign in / Sign up

Export Citation Format

Share Document