scholarly journals A Real-Time Intelligent System for Tracking Patient Condition

Author(s):  
Filipe Portela ◽  
Sérgio Oliveira ◽  
Manuel Santos ◽  
José Machado ◽  
António Abelha
Keyword(s):  
Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 1
Author(s):  
Roberto Melli ◽  
Enrico Sciubba

This paper presents a critical and analytical description of an ongoing research program aimed at the implementation of an expert system capable of monitoring, through an Intelligent Health Control procedure, the instantaneous performance of a cogeneration plant. The expert system is implemented in the CLIPS environment and is denominated PROMISA as the acronym for Prognostic Module for Intelligent System Analysis. It generates, in real time and in a form directly useful to the plant manager, information on the existence and severity of faults, forecasts on the future time history of both detected and likely faults, and suggestions on how to control the problem. The expert procedure, working where and if necessary with the support of a process simulator, derives from the available real-time data a list of selected performance indicators for each plant component. For a set of faults, pre-defined with the help of the plant operator (Domain Expert), proper rules are defined in order to establish whether the component is working correctly; in several instances, since one single failure (symptom) can originate from more than one fault (cause), complex sets of rules expressing the combination of multiple indices have been introduced in the knowledge base as well. Creeping faults are detected by analyzing the trend of the variation of an indicator over a pre-assigned interval of time. Whenever the value of this ‘‘discrete time derivative’’ becomes ‘‘high’’ with respect to a specified limit value, a ‘‘latent creeping fault’’ condition is prognosticated. The expert system architecture is based on an object-oriented paradigm. The knowledge base (facts and rules) is clustered—the chunks of knowledge pertain to individual components. A graphic user interface (GUI) allows the user to interrogate PROMISA about its rules, procedures, classes and objects, and about its inference path. The paper also presents the results of some simulation tests.


2020 ◽  
Vol 11 (4) ◽  
pp. 57-71
Author(s):  
Qiuxia Liu

Using multi-sensor data fusion technology, ARM technology, ZigBee technology, GPRS, and other technologies, an intelligent environmental monitoring system is studied and developed. The SCM STC12C5A60S2 is used to collect the main environmental parameters in real time intelligently. The collected data is transmitted to the central controller LPC2138 through the ZigBee module ATZGB-780S5, and then the collected data is transmitted to the management computer through the GPRS communication module SIM300; thus, the real-time processing and intelligent monitoring of the environmental parameters are realized. The structure of the system is optimized; the suitable fusion model of environmental monitoring parameters is established; the hardware and the software of the intelligent system are completed. Each sensor is set up synchronously at the end of environmental parameter acquisition. The method of different value detection is used to filter out different values. The authors obtain the reliability of the sensor through the application of the analytic hierarchy process. In the analysis and processing of parameters, they proposed a new data fusion algorithm by using the reliability, probability association algorithm, and evidence synthesis algorithm. Through this algorithm, the accuracy of environmental monitoring data and the accuracy of judging monitoring data are greatly improved.


Author(s):  
Antonio Pastor ◽  
Matti Pärssinen ◽  
Patricia Callejo ◽  
Pelayo Vallina ◽  
Rubén Cuevas ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document