An Iterative Process for the Solution of Semi-Linear Elliptic Equations with Discontinuous Coefficients and Solution

Author(s):  
Aigul Manapova
2017 ◽  
Vol 3 (3) ◽  
pp. 728-762 ◽  
Author(s):  
Giuseppe Di Fazio ◽  
Denny Ivanal Hakim ◽  
Yoshihiro Sawano

2014 ◽  
Vol 60 (3) ◽  
pp. 219-223 ◽  
Author(s):  
Almas N. Temirbekov ◽  
Waldemar Wójcik

Abstract In this paper, we consider an elliptic equation with strongly varying coefficients. Interest in the study of these equations is connected with the fact that this type of equation is obtained when using the fictitious domain method. In this paper, we propose a special method for the numerical solution of elliptic equations with strongly varying coefficients. A theorem is proved for the rate of convergence of the iterative process developed. A computational algorithm and numerical calculations are developed to illustrate the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yaqin Jiang

We propose a BDDC preconditioner for the rotatedQ1finite element method for second order elliptic equations with piecewise but discontinuous coefficients. In the framework of the standard additive Schwarz methods, we describe this method by a complete variational form. We show that our method has a quasioptimal convergence behavior; that is, the condition number of the preconditioned problem is independent of the jumps of the coefficients and depends only logarithmically on the ratio between the subdomain size and the mesh size. Numerical experiments are presented to confirm our theoretical analysis.


2013 ◽  
Vol 13 (3) ◽  
pp. 281-289
Author(s):  
Manfred Dobrowolski

Abstract. We study the convergence of finite difference schemes for approximating elliptic equations of second order with discontinuous coefficients. Two of these finite difference schemes arise from the discretization by the finite element method using bilinear shape functions. We prove an convergence for the gradient, if the solution is locally in H3. Thus, in contrast to the first order convergence for the gradient obtained by the finite element theory we show that the gradient is superclose. From the Bramble–Hilbert Lemma we derive a higher order compact (HOC) difference scheme that gives an approximation error of order four for the gradient. A numerical example is given.


Sign in / Sign up

Export Citation Format

Share Document